Federated learning (FL) has been facilitating privacy-preserving deep learning in many walks of life such as medical image classification, network intrusion detection, and so forth. Whereas it necessitates a central parameter server for model aggregation, which brings about delayed model communication and vulnerability to adversarial attacks. A fully decentralized architecture like Swarm Learning allows peer-to-peer communication among distributed nodes, without the central server. One of the most challenging issues in decentralized deep learning is that data owned by each node are usually non-independent and identically distributed (non-IID), causing time-consuming convergence of model training. To this end, we propose a decentralized learning model called Homogeneous Learning (HL) for tackling non-IID data with a self-attention mechanism. In HL, training performs on each round's selected node, and the trained model of a node is sent to the next selected node at the end of each round. Notably, for the selection, the self-attention mechanism leverages reinforcement learning to observe a node's inner state and its surrounding environment's state, and find out which node should be selected to optimize the training. We evaluate our method with various scenarios for an image classification task. The result suggests that HL can produce a better performance compared with standalone learning and greatly reduce both the total training rounds by 50.8% and the communication cost by 74.6% compared with random policy-based decentralized learning for training on non-IID data.


翻译:联邦学习组织(FL)一直在促进许多行界的隐私保护深层次学习,例如医学图像分类、网络入侵检测等。 虽然它需要为模型聚合建立一个中央参数服务器, 从而导致模型集成, 从而导致模式交流模式出现延迟, 并容易发生对抗性攻击。 Swarm Learning 这样的完全分散的架构允许分布式节点之间在没有中央服务器的情况下进行同侪交流。 分散式深层次学习中最棘手的问题是每个节点拥有的数据通常不独立且分布相同(非二维),导致模型培训的耗时趋同。 为此,我们建议采用一个分散式学习模式,称为智商学习(HL),用以用自留机制处理非二维数据。在HL中,每轮选定的节点上进行培训,经过训练的模式在每回合结束时被发送到下一个选定的节点。 值得注意的是,自留式机制利用强化学习学习学习来观察一个节点及其周围环境状态,并找出一个不精准的50度学习模式, 与不选择一个比二维的学习模式来优化学习模式。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
10+阅读 · 2021年3月30日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员