Weakly supervised object detection (WSOD) is a challenging task that requires simultaneously learn object classifiers and estimate object locations under the supervision of image category labels. A major line of WSOD methods roots in multiple instance learning which regards images as bags of instance and selects positive instances from each bag to learn the detector. However, a grand challenge emerges when the detector inclines to converge to discriminative parts of objects rather than the whole objects. In this paper, under the hypothesis that optimal solutions are included in local minima, we propose a discoveryand-selection approach fused with multiple instance learning (DS-MIL), which finds rich local minima and select optimal solutions from multiple local minima. To implement DS-MIL, an attention module is designed so that more context information can be captured by feature maps and more valuable proposals can be collected during training. With proposal candidates, a re-rank module is designed to select informative instances for object detector training. Experimental results on commonly used benchmarks show that our proposed DS-MIL approach can consistently improve the baselines, reporting state-of-the-art performance.


翻译:微弱监督天体探测(WSOD)是一项具有挑战性的任务,需要同时学习物体分类师,并在图像类别标签的监督下估计物体位置。WSOD方法的主要一行源于多实例学习,将图像视为实例包,并从每个包中选择积极的事例来学习探测器。然而,当探测器的内嵌线聚集到对象的受歧视部分而不是整个对象时,将出现巨大的挑战。在本文中,根据最佳解决办法包含在当地微型模型的假设,我们建议一种发现和选择方法,与多实例学习(DS-MIL)相结合,找到丰富的本地微型模型,从多个本地微型模型中选择最佳解决办法。为了实施DS-MIL,设计了一个关注模块,以便更多的背景信息能够通过特征图收集,并在培训期间收集更有价值的建议。在推荐人时,将模块重新排序,为对象探测器培训选择信息实例。常用基准的实验结果显示,我们提议的DS-MIL方法可以不断改进基线,报告最新业绩。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
30+阅读 · 2020年4月23日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Arxiv
0+阅读 · 2021年12月9日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
30+阅读 · 2020年4月23日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Top
微信扫码咨询专知VIP会员