Loss functions play an important role in training deep-network-based object detectors. The most widely used evaluation metric for object detection is Average Precision (AP), which captures the performance of localization and classification sub-tasks simultaneously. However, due to the non-differentiable nature of the AP metric, traditional object detectors adopt separate differentiable losses for the two sub-tasks. Such a mis-alignment issue may well lead to performance degradation. To address this, existing works seek to design surrogate losses for the AP metric manually, which requires expertise and may still be sub-optimal. In this paper, we propose Parameterized AP Loss, where parameterized functions are introduced to substitute the non-differentiable components in the AP calculation. Different AP approximations are thus represented by a family of parameterized functions in a unified formula. Automatic parameter search algorithm is then employed to search for the optimal parameters. Extensive experiments on the COCO benchmark with three different object detectors (i.e., RetinaNet, Faster R-CNN, and Deformable DETR) demonstrate that the proposed Parameterized AP Loss consistently outperforms existing handcrafted losses. Code is released at https://github.com/fundamentalvision/Parameterized-AP-Loss.


翻译:在培训深网络天体探测器方面,损失功能起着重要作用。对物体探测最广泛使用的评价尺度是平均精确度(AP),它同时捕捉到本地化和分类子任务的业绩。然而,由于AP指标的不区别性质,传统天体探测器对两个子任务采用不同的可区分损失。这种不协调问题很可能导致性能退化。为了解决这个问题,现有工作力求设计AP标准人工测量的代谢损失,这需要专门知识,并且可能仍然是次最佳的。我们在此文件中提议参数化的AP损失,其中引入参数化的功能来替代AP计算中不可区分的部件。因此,不同的AP近似值是由统一公式中参数化功能的组合所代表。然后使用自动参数搜索算法来寻找最佳参数。为了解决这个问题,利用现有三种不同的天体探测器(即,Retinnet,更快的R-CNN和可变式的DETR)对CO基准进行广泛的试验。我们提出的AP损失参数化AP损失参数化参数化的参数化功能可以取代AP计算中无法区分的部件的部件。因此,不同的AP近似以统一公式的形式代表了现有的手动模型格式。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年8月24日
专知会员服务
21+阅读 · 2021年7月28日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
如何评价FAIR最新开源的Detectron2目标检测框架?
极市平台
18+阅读 · 2019年10月14日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年4月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
8+阅读 · 2021年4月21日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2019年4月8日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
如何评价FAIR最新开源的Detectron2目标检测框架?
极市平台
18+阅读 · 2019年10月14日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年4月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员