Many high-level skills that are required for computer vision tasks, such as parsing questions, comparing and contrasting semantics, and writing descriptions, are also required in other domains such as natural language processing. In this paper, we ask whether it is possible to learn those skills from textual data and then transfer them to vision tasks without ever training on visual training data. Key to our approach is exploiting the joint embedding space of contrastively trained vision and language encoders. In practice, there can be systematic differences between embedding spaces for different modalities in contrastive models, and we analyze how these differences affect our approach and study strategies to mitigate this concern. We produce models using only text training data on four representative tasks: image captioning, visual entailment, visual question answering and visual news, and evaluate them on standard benchmarks using images. We find these models generally perform close to models trained on images, while surpassing prior work for captioning and visual entailment in this text only setting by over 9 points, and outperforming all prior work on visual news by over 30 points. We also showcase a variety of stylistic image captioning models that are trained using no image data and no human-curated language data, but instead using readily-available text data from books, the web, or language models.
翻译:许多计算机视觉任务所需的高级技能(如解析问题、比较和对比语义以及撰写描述)在其他领域也需要,例如自然语言处理。本文探讨是否可能从文本数据中学习这些技能,然后将它们在不使用视觉训练数据的情况下转移到视觉任务中。我们的方法的关键在于利用对比训练的视觉和语言编码器的联合嵌入空间。在实际应用中,对比模型中不同模态的嵌入空间可能存在系统性差异,我们分析了这些差异如何影响我们的方法,并研究了缓解这个问题的策略。我们使用四个典型任务上的纯文本训练数据生成模型:图像字幕、视觉蕴涵、视觉问答和视觉新闻,并在使用图像进行评估的标准基准测试中对它们进行评估。我们发现,这些模型通常可以接近在图像上进行训练的模型,同时在这种仅文本训练的设置中,字幕和视觉蕴涵的表现优于以前的工作超过9分,而在视觉新闻方面的表现超过以前的所有工作超过30分。我们还展示了各种文体图像字幕模型,这些模型是使用没有图像数据和人工编写的语言数据(而是使用来自书籍、网络或语言模型的易于获得的文本数据)进行训练的。