Many high-level skills that are required for computer vision tasks, such as parsing questions, comparing and contrasting semantics, and writing descriptions, are also required in other domains such as natural language processing. In this paper, we ask whether it is possible to learn those skills from textual data and then transfer them to vision tasks without ever training on visual training data. Key to our approach is exploiting the joint embedding space of contrastively trained vision and language encoders. In practice, there can be systematic differences between embedding spaces for different modalities in contrastive models, and we analyze how these differences affect our approach and study strategies to mitigate this concern. We produce models using only text training data on four representative tasks: image captioning, visual entailment, visual question answering and visual news, and evaluate them on standard benchmarks using images. We find these models generally perform close to models trained on images, while surpassing prior work for captioning and visual entailment in this text only setting by over 9 points, and outperforming all prior work on visual news by over 30 points. We also showcase a variety of stylistic image captioning models that are trained using no image data and no human-curated language data, but instead using readily-available text data from books, the web, or language models.


翻译:许多计算机视觉任务所需的高级技能(如解析问题、比较和对比语义以及撰写描述)在其他领域也需要,例如自然语言处理。本文探讨是否可能从文本数据中学习这些技能,然后将它们在不使用视觉训练数据的情况下转移到视觉任务中。我们的方法的关键在于利用对比训练的视觉和语言编码器的联合嵌入空间。在实际应用中,对比模型中不同模态的嵌入空间可能存在系统性差异,我们分析了这些差异如何影响我们的方法,并研究了缓解这个问题的策略。我们使用四个典型任务上的纯文本训练数据生成模型:图像字幕、视觉蕴涵、视觉问答和视觉新闻,并在使用图像进行评估的标准基准测试中对它们进行评估。我们发现,这些模型通常可以接近在图像上进行训练的模型,同时在这种仅文本训练的设置中,字幕和视觉蕴涵的表现优于以前的工作超过9分,而在视觉新闻方面的表现超过以前的所有工作超过30分。我们还展示了各种文体图像字幕模型,这些模型是使用没有图像数据和人工编写的语言数据(而是使用来自书籍、网络或语言模型的易于获得的文本数据)进行训练的。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【NAACL2022】自然语言处理的对比数据与学习
专知会员服务
46+阅读 · 2022年7月10日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2021年4月8日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员