项目名称: 基于网上弱标注数据的个性化图像标注研究

项目编号: No.61303184

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 李锡荣

作者单位: 中国人民大学

项目金额: 28万元

中文摘要: 自动图像标注对于用户管理和检索不断增加的图像数据至关重要。现有工作专注于构建通用型图像标注模型,即以一个模型应对所有用户。这种一对多的图像标注模式忽略了不同用户在特定情境下对于特定图像主题的偏好,使得标注准确性受到了根本性的制约。为了满足不同用户对于图像标注的个性化需求,本项目研究一个模型对应一个用户的图像标注新模式。为此,我们提出基于网上弱标注数据的个性化图像标注方法。为了突破训练数据获取的瓶颈,我们研究如何从普通用户在互联网上产生的大量弱标注数据中为特定语义标签选取相关正样本和负样本,以建立大规模通用型图像标注模型。进一步,我们研究从用户历史数据中动态挖掘其个人偏好,并结合图像产生时所处的包括地理、天气等上下文环境信息,对通用型图像标注模型所预测的标签进行个性化的优化排序,从而为每个用户提供可量身定制的自动图像标注模型。本项目的研究成果将为个性化的多媒体信息检索提供技术支撑。

中文关键词: 图像标注;社会化媒体;图像标签相关性学习;地理感知图像标注;

英文摘要: Automatic image annotation is crucial for managing and retrieving the increasing amounts of image data. Existing work focuses on building a generic image annotation model, hoping that the model would be universally applicable to annotate images from distinct users. However, such an one-for-all tagging mode ignores a user's personal preference for image subjects in a given situation, resulting in limited annotation accuracy. In order to annotate images in a personalized manner, this proposal studies a new one-model-for-one-user tagging mode. We propose personalized image annotation based on many weakly labeled examples available on the Internet. In order to build a large-scale generic image annotation model, we study how to select relevant training examples for a given semantic tag from the weakly labeled data. For a specific user, we mine her personal preference over image subjects from her past data. Personal preference, in combination with multiple contextual information including the place where images were made and local weather, are then exploited to optimize the prediction of the generic model in a personalized manner. By doing so, we deliver image annotation models personalized with respect to individual users.The resultant techniques of this research will be beneficial to personalized multimedia informat

英文关键词: image annotation;social media;image tag relevance learning;geo-aware image cannotation;

成为VIP会员查看完整内容
0

相关内容

CVPR 2022 Oral | 基于熵筛选的半监督三维旋转回归
专知会员服务
17+阅读 · 2022年4月18日
基于对比调整缩放的图自监督学习
专知会员服务
8+阅读 · 2022年4月6日
专知会员服务
16+阅读 · 2021年8月25日
专知会员服务
18+阅读 · 2021年5月16日
专知会员服务
25+阅读 · 2020年12月17日
专知会员服务
36+阅读 · 2020年12月14日
专知会员服务
47+阅读 · 2020年10月20日
CIKM'21 | 自监督图神经网络在社会化推荐中的应用
图与推荐
3+阅读 · 2021年11月16日
基于知识图谱的推荐系统总结
机器学习与推荐算法
4+阅读 · 2021年11月11日
自监督视觉特征学习
专知
0+阅读 · 2021年11月1日
MM2020 | 基于对抗学习的个性化标签推荐
机器学习与推荐算法
0+阅读 · 2021年10月18日
基于图嵌入技术的推荐系统长文综述
机器学习与推荐算法
0+阅读 · 2021年9月29日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Automated Data Augmentations for Graph Classification
Arxiv
13+阅读 · 2022年1月20日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
小贴士
相关VIP内容
CVPR 2022 Oral | 基于熵筛选的半监督三维旋转回归
专知会员服务
17+阅读 · 2022年4月18日
基于对比调整缩放的图自监督学习
专知会员服务
8+阅读 · 2022年4月6日
专知会员服务
16+阅读 · 2021年8月25日
专知会员服务
18+阅读 · 2021年5月16日
专知会员服务
25+阅读 · 2020年12月17日
专知会员服务
36+阅读 · 2020年12月14日
专知会员服务
47+阅读 · 2020年10月20日
相关资讯
CIKM'21 | 自监督图神经网络在社会化推荐中的应用
图与推荐
3+阅读 · 2021年11月16日
基于知识图谱的推荐系统总结
机器学习与推荐算法
4+阅读 · 2021年11月11日
自监督视觉特征学习
专知
0+阅读 · 2021年11月1日
MM2020 | 基于对抗学习的个性化标签推荐
机器学习与推荐算法
0+阅读 · 2021年10月18日
基于图嵌入技术的推荐系统长文综述
机器学习与推荐算法
0+阅读 · 2021年9月29日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员