In this paper, we present a numerical strategy to check the strong stability (or GKS-stability) of one-step explicit totally upwind scheme in 1D with numerical boundary conditions. The underlying approximated continuous problem is a hyperbolic partial differential equation. Our approach is based on the Uniform Kreiss-Lopatinskii Condition, using linear algebra and complex analysis to count the number of zeros of the associated determinant. The study is illustrated with the Beam-Warming scheme together with the simplified inverse Lax-Wendroff procedure at the boundary.
翻译:在本文中,我们提出了一个数字战略,以检查1D的一阶直线完全上风计划(或GKS稳定性)在带有数字边界条件的1D中坚固的稳定性(或GKS稳定性),潜在的持续问题是双曲部分差异方程。我们的方法以统一Kreiss-Lopatinskii 条件为基础,使用线性代数和复杂分析来计算相关决定因素的零数。研究用Beam-Warming计划以及边界上的简化的Lax-Wendroff程序一起加以说明。