Cryptocurrencies return cross-predictability and technological similarity yield information on risk propagation and market segmentation. To investigate these effects, we build a time-varying network for cryptocurrencies, based on the evolution of return cross-predictability and technological similarities. We develop a dynamic covariate-assisted spectral clustering method to consistently estimate the latent community structure of cryptocurrencies network that accounts for both sets of information. We demonstrate that investors can achieve better risk diversification by investing in cryptocurrencies from different communities. A cross-sectional portfolio that implements an inter-crypto momentum trading strategy earns a 1.08% daily return. By dissecting the portfolio returns on behavioral factors, we confirm that our results are not driven by behavioral mechanisms.
翻译:为了调查这些影响,我们根据回报的跨预测性和技术相似性演进情况,建立了一个具有时间差异的加密网络。我们开发了动态共变辅助光谱集成法,以一致估计记录两组信息的加密网络的潜在社区结构。我们证明投资者可以通过投资于来自不同社区的加密变异性来实现更好的风险多样化。执行加密动力交易战略的跨部门组合每天获得1.08%的回报。通过将组合回报与行为因素区分开来,我们确认我们的结果不是由行为机制驱动的。