In this paper, we develop a novel high-dimensional time-varying coefficient estimation method, based on high-dimensional Ito diffusion processes. To account for high-dimensional time-varying coefficients, we first estimate local (or instantaneous) coefficients using a time-localized Dantzig selection scheme under a sparsity condition, which results in biased local coefficient estimators due to the regularization. To handle the bias, we propose a debiasing scheme, which provides well-performing unbiased local coefficient estimators. With the unbiased local coefficient estimators, we estimate the integrated coefficient, and to further account for the sparsity of the coefficient process, we apply thresholding schemes. We call this Thresholding dEbiased Dantzig (TED). We establish asymptotic properties of the proposed TED estimator. In the empirical analysis, we apply the TED procedure to analyzing high-dimensional factor models using high-frequency data.
翻译:在本文中,我们根据高维的Ito 扩散过程,开发了一种新的高维时间分布系数估计法。为了计算高维时间分布系数,我们首先在宽度条件下使用时间定位的Dantzig选择方案估算当地(或瞬时)系数,结果因身份正规化而产生偏颇的当地系数估计。为了处理偏差,我们建议了一种偏差方案,提供良好的公正不偏倚的当地系数估计器。我们用不偏倚的当地系数估计器估计综合系数,并进一步计算系数过程的宽度,我们采用临界值方案。我们称之为“保持 dEbiased Dantzig ” (TED) 。我们建立了拟议的TED 估计仪的偏差特性。在经验分析中,我们运用TED 程序来使用高频数据分析高维系数模型。