In this paper, we study network reliability in relation to a periodic time-dependent utility function that reflects the system's functional performance. When an anomaly occurs, the system incurs a loss of utility that depends on the anomaly's timing and duration. We analyze the long-term average utility loss by considering exponential anomalies' inter-arrival times and general distributions of maintenance duration. We show that the expected utility loss converges in probability to a simple form. We then extend our convergence results to more general distributions of anomalies' inter-arrival times and to particular families of non-periodic utility functions. To validate our results, we use data gathered from a cellular network consisting of 660 base stations and serving over 20k users. We demonstrate the quasi-periodic nature of users' traffic and the exponential distribution of the anomalies' inter-arrival times, allowing us to apply our results and provide reliability scores for the network. We also discuss the convergence speed of the long-term average utility loss, the interplay between the different network's parameters, and the impact of non-stationarity on our convergence results.
翻译:在本文中,我们研究网络可靠性与反映系统功能功能的定期时间依赖的公用功能的关系。当出现异常时,系统将失去根据异常时间和持续时间决定的公用功能。我们通过考虑指数异常的抵达时间和保养时间的一般分布来分析长期平均公用功能损失。我们表明,预期公用损失有可能以简单的形式出现。然后,我们将我们的趋同结果扩大到异常抵达时间和非定期公用功能的特定家庭的一般分布。为了验证我们的结果,我们使用由660个基站和20k用户组成的蜂窝网络收集的数据。我们显示了用户交通的准周期性质和异常抵达时间的指数分布,使我们能够应用我们的结果并为网络提供可靠性分数。我们还讨论了长期平均公用损失的趋同速度、不同网络参数之间的相互作用以及非静止对我们的趋同结果的影响。