The objective in a traditional reinforcement learning (RL) problem is to find a policy that optimizes the expected value of a performance metric such as the infinite-horizon cumulative discounted or long-run average cost/reward. In practice, optimizing the expected value alone may not be satisfactory, in that it may be desirable to incorporate the notion of risk into the optimization problem formulation, either in the objective or as a constraint. Various risk measures have been proposed in the literature, e.g., exponential utility, variance, percentile performance, chance constraints, value at risk (quantile), conditional value-at-risk, prospect theory and its later enhancement, cumulative prospect theory. In this book, we consider risk-sensitive RL in two settings: one where the goal is to find a policy that optimizes the usual expected value objective while ensuring that a risk constraint is satisfied, and the other where the risk measure is the objective. We survey some of the recent work in this area specifically where policy gradient search is the solution approach. In the first risk-sensitive RL setting, we cover popular risk measures based on variance, conditional value-at-risk, and chance constraints, and present a template for policy gradient-based risk-sensitive RL algorithms using a Lagrangian formulation. For the setting where risk is incorporated directly into the objective function, we consider an exponential utility formulation, cumulative prospect theory, and coherent risk measures. This non-exhaustive survey aims to give a flavor of the challenges involved in solving risk-sensitive RL problems using policy gradient methods, as well as outlining some potential future research directions.


翻译:传统强化学习(RL)问题的目标是找到一种政策,优化业绩衡量标准的预期价值,如无限和累积的累积贴现或长期平均成本/回报。在实践中,仅优化预期价值可能不令人满意,因为最好将风险概念纳入优化问题拟订,无论是在目标还是作为制约因素。文献中提出了各种风险措施,例如指数效用、差异、百分率业绩、机会限制、风险价值(量性)、有条件的高风险价值、前景理论及其后来的增强、累积前景理论。在本书中,我们考虑风险敏感性的RL在两种情况下:一个目标是找到一种政策,优化通常的预期价值目标,同时确保风险制约得到满足,另一个是目标。我们调查了这一领域最近的一些工作,即政策梯度搜索是解决问题的方法。在第一个风险敏感性RL中,我们涵盖基于差异、有条件的值、前景理论理论及其后来的增强、累积前景理论理论理论理论的理论。我们考虑两种情况下,风险敏感的RL的目标是找到一种政策优化的预期目标,同时确保满足风险的制约,另一个是风险衡量风险指标的形成。我们研究中的一些近期工作是政策梯度,将基于基于差异、有条件的风险评估、有条件的风险评估的风险评估和机会的风险评估,将一个我们目前将一个目标纳入一个目标的模型,将一个目标纳入一个目标,将一个目标,将一个目标纳入一个风险风险分析,将一个目标,将一个我们作为一个目标,将一个目标,将一个目标纳入一个目标纳入一个目标,将一个目标纳入一个目标,将一个目标,将一个目标纳入一个我们作为一个目标,将一个目标纳入一个目标,将一个风险分析。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
11+阅读 · 2021年12月8日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员