Traffic signal control is an important problem in urban mobility with a significant potential of economic and environmental impact. While there is a growing interest in Reinforcement Learning (RL) for traffic signal control, the work so far has focussed on learning through simulations which could lead to inaccuracies due to simplifying assumptions. Instead, real experience data on traffic is available and could be exploited at minimal costs. Recent progress in {\em offline} or {\em batch} RL has enabled just that. Model-based offline RL methods, in particular, have been shown to generalize from the experience data much better than others. We build a model-based learning framework which infers a Markov Decision Process (MDP) from a dataset collected using a cyclic traffic signal control policy that is both commonplace and easy to gather. The MDP is built with pessimistic costs to manage out-of-distribution scenarios using an adaptive shaping of rewards which is shown to provide better regularization compared to the prior related work in addition to being PAC-optimal. Our model is evaluated on a complex signalized roundabout showing that it is possible to build highly performant traffic control policies in a data efficient manner.


翻译:交通信号控制是城市移动中的一个重要问题,具有巨大的经济和环境影响潜力。虽然人们越来越关注交通信号控制方面的强化学习(RL),但迄今为止的工作侧重于通过模拟学习,这种模拟可能由于简化的假设而导致不准确。相反,关于交通的真实经验数据是可获得的,可以以最低的成本加以利用。最近在 yem 离线 或 ~em批量 或 RL 方面取得的进展正是如此。基于模型的离线RL 方法尤其显示比其他方法更能从经验数据中概括更多。我们建立了一个基于模型的学习框架,从使用循环交通信号控制政策收集的数据集中推导出Markov 决策过程(MDP ) 。 MDP 建于悲观成本, 利用适应性收益的形状来管理分配外的情景, 事实证明, 与先前的相关工作相比,除了PAC-opatimic(PAC-timal), 我们的模型在复杂的信号环绕图上进行了评估,显示它有可能在高效的交通控制政策中建立高效的数据控制方式。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
11+阅读 · 2021年12月8日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员