We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, natural language processing, including dialogue systems, machine translation, and text generation, computer vision, neural architecture design, business management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and computer systems. We mention topics not reviewed yet, and list a collection of RL resources. After presenting a brief summary, we close with discussions. Please see Deep Reinforcement Learning, arXiv:1810.06339, for a significant update.
翻译:我们概述了最近深入强化学习(RL)所取得的令人兴奋的成就。我们讨论了六个核心要素、六个重要机制和十二项应用。我们首先讨论了机器学习、深学习和强化学习的背景。接下来我们讨论了核心RL要素,特别是价值功能,特别是深Q网络(DQN)、政策、奖励、模型、规划和探索。之后,我们讨论了研究领域的重要机制,包括注意力和记忆、不受监督的学习、转移学习、多剂RL、等级RL和学习。然后我们讨论了RL的各种应用,包括游戏,特别是阿尔法戈、机器人、自然语言处理,包括对话系统、机器翻译和文本生成、计算机、神经结构设计、商业管理、金融、保健、工业4.0、智能电网、智能运输系统和计算机系统。我们提到了尚未审查的专题,并列出了RL资源汇编。我们先作简短的总结,然后结束讨论。请见深强化学习:180.06339,以便进行重大更新。