We propose a framework to enable multipurpose assistive mobile robots to autonomously wipe tables to clean spills and crumbs. This problem is challenging, as it requires planning wiping actions while reasoning over uncertain latent dynamics of crumbs and spills captured via high-dimensional visual observations. Simultaneously, we must guarantee constraints satisfaction to enable safe deployment in unstructured cluttered environments. To tackle this problem, we first propose a stochastic differential equation to model crumbs and spill dynamics and absorption with a robot wiper. Using this model, we train a vision-based policy for planning wiping actions in simulation using reinforcement learning (RL). To enable zero-shot sim-to-real deployment, we dovetail the RL policy with a whole-body trajectory optimization framework to compute base and arm joint trajectories that execute the desired wiping motions while guaranteeing constraints satisfaction. We extensively validate our approach in simulation and on hardware. Video: https://youtu.be/inORKP4F3EI
翻译:我们提出一个框架,使多用途辅助移动机器人能够自动擦除表格,以清理溢漏和碎屑。 这个问题具有挑战性,因为它需要规划擦拭行动,同时要对通过高维视觉观察捕捉到的碎屑和溢漏的不确定潜在动态进行推理。 同时,我们必须保证对限制的满意度,以便能够在无结构的杂乱环境中安全部署。为了解决这个问题,我们首先提议一个随机差异方程式,以模型碎屑和溢漏动态,并用机器人擦拭器吸收。使用这个模型,我们培训一种基于愿景的政策,以规划利用强化学习进行模拟的擦拭行动。为了能够实现零弹射的模拟模拟(RL),我们将RL政策与一个全体轨迹优化框架相匹配,以计算执行所希望的擦拭动议的基点和联合轨迹,同时保证对限制的满意度。我们在模拟和硬件中广泛验证我们的做法。 视频: https://yout.be/inORKP4F3EI。