This paper proposes embedded Gaussian Process Barrier States (GP-BaS), a methodology to safely control unmodeled dynamics of nonlinear system using Bayesian learning. Gaussian Processes (GPs) are used to model the dynamics of the safety-critical system, which is subsequently used in the GP-BaS model. We derive the barrier state dynamics utilizing the GP posterior, which is used to construct a safety embedded Gaussian process dynamical model (GPDM). We show that the safety-critical system can be controlled to remain inside the safe region as long as we can design a controller that renders the BaS-GPDM's trajectories bounded (or asymptotically stable). The proposed approach overcomes various limitations in early attempts at combining GPs with barrier functions due to the abstention of restrictive assumptions such as linearity of the system with respect to control, relative degree of the constraints and number or nature of constraints. This work is implemented on various examples for trajectory optimization and control including optimal stabilization of unstable linear system and safe trajectory optimization of a Dubins vehicle navigating through an obstacle course and on a quadrotor in an obstacle avoidance task using GP differentiable dynamic programming (GP-DDP). The proposed framework is capable of maintaining safe optimization and control of unmodeled dynamics and is purely data driven.
翻译:本文建议采用高斯进程障碍国(GP-BaS)这一安全控制非线性系统非模范动态的方法。 高斯进程(GP)用于模拟安全临界系统的动态,随后在GP-BaS模型中使用。 我们利用GP-BaS模型生成障碍状态动态,用于构建安全嵌入高斯进程动态模型(GPDM)。 我们表明,只要我们能够设计一个使巴斯-GPDM的轨迹捆绑起来(或暂时稳定)的控制器,安全控制系统就能够控制在安全区域内。 提议的方法克服了将GP与屏性功能相结合的早期尝试中的各种限制,原因是放弃了限制性的假设,如该系统在控制、约束程度和数量或性质方面的不一线性(GPM)。 我们的工作是在轨迹优化和控制方面的各种实例,包括最优化的不稳定线性系统和安全轨道优化Duban车辆的轨迹不固定(或无线性稳定)轨迹轨迹优化,这是利用一种安全机动的GPA型安全机动性机动性机动性机动性机动性机动性机动性机动性模型,这是在一种机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性机动性设计模型上的一个拟议模型上的一种安全模型。