In this study, we consider simulation-based worst-case optimization problems with continuous design variables and a finite scenario set. To reduce the number of simulations required and increase the number of restarts for better local optimum solutions, we propose a new approach referred to as adaptive scenario subset selection (AS3). The proposed approach subsamples a scenario subset as a support to construct the worst-case function in a given neighborhood, and we introduce such a scenario subset. Moreover, we develop a new optimization algorithm by combining AS3 and the covariance matrix adaptation evolution strategy (CMA-ES), denoted AS3-CMA-ES. At each algorithmic iteration, a subset of support scenarios is selected, and CMA-ES attempts to optimize the worst-case objective computed only through a subset of the scenarios. The proposed algorithm reduces the number of simulations required by executing simulations on only a scenario subset, rather than on all scenarios. In numerical experiments, we verified that AS3-CMA-ES is more efficient in terms of the number of simulations than the brute-force approach and a surrogate-assisted approach lq-CMA-ES when the ratio of the number of support scenarios to the total number of scenarios is relatively small. In addition, the usefulness of AS3-CMA-ES was evaluated for well placement optimization for carbon dioxide capture and storage (CCS). In comparison with the brute-force approach and lq-CMA-ES, AS3-CMA-ES was able to find better solutions because of more frequent restarts.
翻译:在这项研究中,我们考虑了基于模拟的最坏情况优化问题,包括连续设计变量和一套有限的假设情景。为了减少所需的模拟数量,并增加重新启动次数,以寻求更好的当地最佳解决办法,我们提议了一种称为适应性假设子选择的新方法(AS3)。拟议方法子样样样样了一个子方案子集,以支持在特定社区建立最坏情况功能,我们引入了这种设想子集。此外,我们开发了一种新的优化算法,将AS3和常态矩阵适应演进战略(CMA-ES)结合起来,意指AS3-CMA-ES。在每次算法转换中,选择了一套经常支助方案,并且CMA-ES试图优化最坏情况目标,仅通过一系列方案来计算。拟议的算法减少了在某个假设子集而不是所有假设中进行模拟所需的模拟次数。在数字实验中,我们核实AS3-CMA-ES在模拟、ASS-S-SAFOR方法中的效率高于粗力,因为SAS-MA3的精确度假设情景比对ASA-S-ARC的精确度比,因为对AIS-S-AMA3的预测的精确度比对A-A-AFI-S-S-S-S-S-S-S-S-AD-S-AD-S-S-S-S-S-S-AD-S-S-S-S-S-S-S-S-S-AD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-Avic-S-S-Sl-SD-S-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-A-A-A-A-A-A-A-A-A-A-S-S-A-S-S-A-A-S-S-S-S-S-S-S-S-S-S-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A