Multimodal contrastive learning models (e.g., CLIP) can learn high-quality representations from large-scale image-text datasets, while they exhibit significant vulnerabilities to backdoor attacks, raising serious safety concerns. In this paper, we reveal that CLIP's vulnerabilities primarily stem from its tendency to encode features beyond in-dataset predictive patterns, compromising its visual feature resistivity to input perturbations. This makes its encoded features highly susceptible to being reshaped by backdoor triggers. To address this challenge, we propose Repulsive Visual Prompt Tuning (RVPT), a novel defense approach that employs deep visual prompt tuning with a specially designed feature-repelling loss. Specifically, RVPT adversarially repels the encoded features from deeper layers while optimizing the standard cross-entropy loss, ensuring that only predictive features in downstream tasks are encoded, thereby enhancing CLIP's visual feature resistivity against input perturbations and mitigating its susceptibility to backdoor attacks. Unlike existing multimodal backdoor defense methods that typically require the availability of poisoned data or involve fine-tuning the entire model, RVPT leverages few-shot downstream clean samples and only tunes a small number of parameters. Empirical results demonstrate that RVPT tunes only 0.27\% of the parameters in CLIP, yet it significantly outperforms state-of-the-art defense methods, reducing the attack success rate from 89.70\% to 2.76\% against the most advanced multimodal attacks on ImageNet and effectively generalizes its defensive capabilities across multiple datasets.
 翻译:暂无翻译