While recent progress has significantly boosted few-shot classification (FSC) performance, few-shot object detection (FSOD) remains challenging for modern learning systems. Existing FSOD systems follow FSC approaches, ignoring the issues of spatial misalignment and vagueness in class representations, and consequently result in low performance. Observing this, we propose a novel Dual-Awareness Attention (DAnA) mechanism that can adaptively generate query-position-aware (QPA) support features and guide the detection networks precisely. The generated QPA features represent local information of a support image conditioned on a given region of the query. By taking the spatial relationships across different images into consideration, our approach conspicuously outperforms previous FSOD methods (+6.9 AP relatively) and achieves remarkable results even under a challenging cross-dataset evaluation setting. Furthermore, the proposed DAnA component is flexible and adaptable to multiple existing object detection frameworks. By equipping DAnA, conventional object detection models, Faster R-CNN and RetinaNet, which are not designed explicitly for few-shot learning, reach state-of-the-art performance in FSOD tasks.
翻译:虽然最近的进展大大提升了少数分级(FSC)的性能,但对现代学习系统而言,微小的物体探测(FSOD)仍具有挑战性。现有的FSOD系统采用FSC方法,忽略了阶级表现的空间错配和模糊问题,因而造成低性能。我们注意到这一点,提出一个新的双重意识关注机制,可以适应性地生成查询定位(QPA)支持功能,并准确指导探测网络。生成的QPA功能代表以查询区域为条件的辅助图像的当地信息。通过考虑不同图像的空间关系,我们的方法明显优于以前的FSOD方法(+6.9 AP相对而言),甚至在具有挑战性的交叉数据评价环境下也取得了显著成果。此外,拟议的DAA组成部分具有灵活性,适应了多种现有物体探测框架。通过装备DAnA、常规物体探测模型、快速R-CNN和RetinaNet,这些功能并非专门设计用于少发学、达到FSOMD任务的状态性能。