Deep learning has exhibited superior performance for various tasks, especially for high-dimensional datasets, such as images. To understand this property, we investigate the approximation and estimation ability of deep learning on anisotropic Besov spaces. The anisotropic Besov space is characterized by direction-dependent smoothness and includes several function classes that have been investigated thus far. We demonstrate that the approximation error and estimation error of deep learning only depend on the average value of the smoothness parameters in all directions. Consequently, the curse of dimensionality can be avoided if the smoothness of the target function is highly anisotropic. Unlike existing studies, our analysis does not require a low-dimensional structure of the input data. We also investigate the minimax optimality of deep learning and compare its performance with that of the kernel method (more generally, linear estimators). The results show that deep learning has better dependence on the input dimensionality if the target function possesses anisotropic smoothness, and it achieves an adaptive rate for functions with spatially inhomogeneous smoothness.
翻译:深层学习表现优异, 特别是高维数据集( 如图像) 。 为了理解此属性, 我们调查了在 Aisotropic Besov 空间深层学习的近似和估计能力。 亚异种贝索夫空间的特征是方向性平稳, 包括了迄今为止已经调查过的几类功能。 我们证明深层学习的近似错误和估计错误仅取决于所有方向的平滑参数的平均值。 因此, 如果目标功能的平滑性是高度反向的, 可以避免对维度的诅咒。 与现有的研究不同, 我们的分析不需要输入数据的低维结构。 我们还调查深层学习的微量最佳性, 并将其与内核方法的性能进行比较( 更一般地说, 线性测算器 ) 。 结果表明, 深层学习更依赖于输入的维度, 如果目标功能具有亚异性光滑度, 并且它能够实现空间无色平稳功能的适应率。