【开放书】深度学习导论,196页pdf,Introduction to Deep Learning

2020 年 7 月 15 日 专知
【开放书】深度学习导论,196页pdf,Introduction to Deep Learning



概述


这本教科书提供了一个简明的,易理解的和引人入胜的深度学习的第一个介绍,提供了大量连接主义模型。本文以简单直观的方式探索最流行的算法和架构,并逐步解释数学推导。内容涵盖卷积网络、LSTMs、Word2vec、RBMs、DBNs、神经图灵机、内存网络和自动编码器。整本书提供了大量的工作Python代码示例,代码也在附带的网站上单独提供。


主题和特点:

  • 介绍机器学习的基本原理,以及深度学习的数学和计算条件

  • 讨论前馈神经网络,并探索这些可应用于任何神经网络的修改

  • 检查卷积神经网络,和递归连接到前馈神经网络

  • 描述分布式表示的概念、自动编码器的概念以及深度学习语言处理背后的思想

  • 介绍了人工智能和神经网络的简史,并回顾了在深度学习和连接主义方面有趣的开放研究问题

  • 这本清晰而生动的深度学习入门书是计算机科学、认知科学和数学以及语言学、逻辑、哲学和心理学等领域的研究生和高级本科生的必备读物。


桑德罗·斯坎西博士是萨格勒布大学逻辑学助理教授,也是克罗地亚萨格勒布大学代数学院的数据科学讲师。


https://link.springer.com/book/10.1007/978-3-319-73004-2?utm_source=springer&utm_medium=referral&utm_content=null&utm_campaign=SRCN_3_LL01_CN_CNJS_CS_textbook



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“DL196” 可以获取《深度学习导论,196页pdf,Introduction to Deep Learning》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看获取5000+AI主题知识资源
登录查看更多
4

相关内容

MIT近期放出了课程6.S191:深度学习导论的资料。该课程是MIT官方的关于深度学习方法的官方入门课程,主要内容包括深度序列建模,深度计算机视觉,深度生成模型,深度强化学习等。

这本教科书提供了一个简明的,易理解的和引人入胜的深度学习的第一个介绍,提供了大量连接主义模型。本文以简单直观的方式探索最流行的算法和架构,并逐步解释数学推导。内容涵盖卷积网络、LSTMs、Word2vec、RBMs、DBNs、神经图灵机、内存网络和自动编码器。整本书提供了大量的工作Python代码示例,代码也在附带的网站上单独提供。

主题和特点:

  • 介绍机器学习的基本原理,以及深度学习的数学和计算先决条件
  • 讨论前馈神经网络,并探索这些可应用于任何神经网络的修改
  • 检查卷积神经网络,和递归连接到前馈神经网络
  • 描述分布式表示的概念、自动编码器的概念以及深度学习语言处理背后的思想
  • 介绍了人工智能和神经网络的简史,并回顾了在深度学习和连接主义方面有趣的开放研究问题
  • 这本清晰而生动的深度学习入门书是计算机科学、认知科学和数学以及语言学、逻辑、哲学和心理学等领域的研究生和高级本科生的必备读物。

桑德罗·斯坎西博士是萨格勒布大学逻辑学助理教授,也是克罗地亚萨格勒布大学代数学院的数据科学讲师。

地址:

https://link.springer.com/book/10.1007/978-3-319-73004-2?utm_source=springer&utm_medium=referral&utm_content=null&utm_campaign=SRCN_3_LL01_CN_CNJS_CS_textbook

成为VIP会员查看完整内容
0
46

数据科学和人工智能是令人着迷的计算领域。微软在这些新技术上下了很大的赌注,但我们也知道,数据科学家都是训练有素的专业人士,并不是每个软件开发人员都能创建和维护复杂的数据模型,执行线性代数或购买昂贵的GPU设备来运行这些模型。这正是我们创造认知服务的原因。这套服务提供了预训练模型,您可以使用开箱即用的模型来执行视觉、语音、知识、搜索和语言方面的操作。在本次会议上,微软的云开发者倡导者Laurent Bugnion将向您展示如何使用认知服务增强应用程序的高级功能,如何使用自己的数据细化训练过的模型,以及如何将认知服务与其他Azure服务集成以实现任务自动化。

成为VIP会员查看完整内容
0
57

课程简介

麻省理工学院的深度学习入门课程,适用于计算机视觉,自然语言处理,生物学等领域。主要内容包括深度序列建模,深度计算机视觉,深度生成模型,深度强化学习等。旨在让学习者获得深度学习算法的基础知识,并获得在TensorFlow中构建神经网络的实践经验。

课程大纲

  • 第一讲 - 深度学习入门
  • 第二讲 - 深度序列建模
  • 实验一 - Tensorflow简介;音乐产生
  • 第三讲 - 深度计算机视觉
  • 第四讲 - 深度生成建模
  • 实验二 - 消除面部识别系统的偏见
  • 第五讲 - 深度强化学习
  • 第六讲 - 局限性和新领域
  • 实验三 - 像素到控制学习

首席讲师:Alexander Amini、Ava Soleimany

讲师简介

Alexander Amini在麻省理工学院获得了电子工程和计算机科学的理学学士学位和硕士学位,目前为麻省理工学院(MIT)博士生 ,NSF研究员,MIT6.S191的主要组织者和讲师:《深度学习入门》。研究重点是构建用于自主系统的端到端控制(即对执行的感知)的机器学习算法,并为这些算法制定保证。并且从事自动驾驶汽车的控制,深层神经网络的置信度,人类移动性的数学建模以及构建复杂的惯性优化系统等方面的工作。

Ava Soleimany在麻省理工学院获得了计算机科学和分子生物学的理学学士学位,目前为哈弗大学生物学理学博士、麻省理工学院博士生,同为MIT6.S191的主要组织者和讲师:《深度学习入门》。

成为VIP会员查看完整内容
深度学习导论课程ppt.pdf
0
30
小贴士
相关论文
A Survey on Bayesian Deep Learning
Hao Wang,Dit-Yan Yeung
48+阅读 · 2020年7月2日
A Modern Introduction to Online Learning
Francesco Orabona
15+阅读 · 2019年12月31日
Bernhard Schölkopf
10+阅读 · 2019年11月24日
Few-shot Learning: A Survey
Yaqing Wang,Quanming Yao
334+阅读 · 2019年4月10日
Ziwei Zhang,Peng Cui,Wenwu Zhu
40+阅读 · 2018年12月11日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Andreas Kamilaris,Francesc X. Prenafeta-Boldu
10+阅读 · 2018年7月31日
Relational Deep Reinforcement Learning
Vinicius Zambaldi,David Raposo,Adam Santoro,Victor Bapst,Yujia Li,Igor Babuschkin,Karl Tuyls,David Reichert,Timothy Lillicrap,Edward Lockhart,Murray Shanahan,Victoria Langston,Razvan Pascanu,Matthew Botvinick,Oriol Vinyals,Peter Battaglia
6+阅读 · 2018年6月28日
Ignasi Clavera,Anusha Nagabandi,Ronald S. Fearing,Pieter Abbeel,Sergey Levine,Chelsea Finn
7+阅读 · 2018年3月30日
Tom Young,Devamanyu Hazarika,Soujanya Poria,Erik Cambria
7+阅读 · 2018年2月20日
Top
微信扫码咨询专知VIP会员