We propose a theoretical framework for investigating a modeling error caused by numerical integration in the learning process of dynamics. Recently, learning equations of motion to describe dynamics from data using neural networks has been attracting attention. During such training, numerical integration is used to compare the data with the solution of the neural network model; however, discretization errors due to numerical integration prevent the model from being trained correctly. In this study, we formulate the modeling error using the Dahlquist test equation that is commonly used in the analysis of numerical methods and apply it to some of the Runge--Kutta methods.
翻译:我们提出了一个理论框架,用于调查动态学习过程中数字整合造成的模型错误。最近,利用神经网络从数据中学习动态描述动态的运动方程式引起了人们的注意。在这种培训中,数字整合被用来将数据与神经网络模型的解决方案进行比较;然而,由于数字整合造成的离散性错误使模型无法得到正确培训。在本研究中,我们使用在数字方法分析中常用的Dahlquist测试方程式来制定模型错误,并将其应用于一些龙格-库塔方法。