Federated learning (FL) is a popular way of edge computing that doesn't compromise users' privacy. Current FL paradigms assume that data only resides on the edge, while cloud servers only perform model averaging. However, in real-life situations such as recommender systems, the cloud server has the ability to store historical and interactive features. In this paper, our proposed Edge-Cloud Collaborative Knowledge Transfer Framework (ECCT) bridges the gap between the edge and cloud, enabling bi-directional knowledge transfer between both, sharing feature embeddings and prediction logits. ECCT consolidates various benefits, including enhancing personalization, enabling model heterogeneity, tolerating training asynchronization, and relieving communication burdens. Extensive experiments on public and industrial datasets demonstrate ECCT's effectiveness and potential for use in academia and industry.


翻译:联邦学习(FL)是一种受欢迎的边缘计算方式,不会危及用户隐私。当前的FL范例假定数据只存在于边缘上,而云服务器只执行模型平均。然而,在推荐系统等实际情况下,云服务器具有存储历史和交互特征的能力。在本文中,我们提出了边缘-云协同知识转移框架(ECCT),将边缘和云之间的差距连接起来,实现双向知识转移,共享特征嵌入和预测对数。ECCT巩固了各种优点,包括增强个性化,实现模型异构性,容忍训练异步性,并减轻通信负担。公共和工业数据集上的大量实验表明了ECCT的有效性和在学术和工业中使用的潜力。

1
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员