Statistical shape modeling is an essential tool for the quantitative analysis of anatomical populations. Point distribution models (PDMs) represent the anatomical surface via a dense set of correspondences, an intuitive and easy-to-use shape representation for subsequent applications. These correspondences are exhibited in two coordinate spaces: the local coordinates describing the geometrical features of each individual anatomical surface and the world coordinates representing the population-level statistical shape information after removing global alignment differences across samples in the given cohort. We propose a deep-learning-based framework that simultaneously learns these two coordinate spaces directly from the volumetric images. The proposed joint model serves a dual purpose; the world correspondences can directly be used for shape analysis applications, circumventing the heavy pre-processing and segmentation involved in traditional PDM models. Additionally, the local correspondences can be used for anatomy segmentation. We demonstrate the efficacy of this joint model for both shape modeling applications on two datasets and its utility in inferring the anatomical surface.
翻译:点分布模型(PDMs)代表解剖表面,通过一组密集的对应材料,即直观和易于使用的形状表示,供以后应用。这些对应材料在两个协调空间展示:描述每个个体解剖表面的几何特征的地方坐标和代表人口层次统计形状信息的世界坐标,在消除特定组群样本之间全球对齐差异之后。我们提议了一个深学习基础框架,直接从体积图像中学习这两个协调空间。拟议的联合模型具有双重用途;世界通信可以直接用于形状分析应用,绕过传统的PDM模型中涉及的重预处理和分解。此外,地方通信可用于解剖分解。我们展示了这一联合模型在两个数据集上形成模型应用的功效及其在推断解剖表上的效用。