We have recently seen tremendous progress in diffusion advances for generating realistic human motions. Yet, they largely disregard the rich multi-human interactions. In this paper, we present InterGen, an effective diffusion-based approach that incorporates human-to-human interactions into the motion diffusion process, which enables layman users to customize high-quality two-person interaction motions, with only text guidance. We first contribute a multimodal dataset, named InterHuman. It consists of about 107M frames for diverse two-person interactions, with accurate skeletal motions and 16,756 natural language descriptions. For the algorithm side, we carefully tailor the motion diffusion model to our two-person interaction setting. To handle the symmetry of human identities during interactions, we propose two cooperative transformer-based denoisers that explicitly share weights, with a mutual attention mechanism to further connect the two denoising processes. Then, we propose a novel representation for motion input in our interaction diffusion model, which explicitly formulates the global relations between the two performers in the world frame. We further introduce two novel regularization terms to encode spatial relations, equipped with a corresponding damping scheme during the training of our interaction diffusion model. Extensive experiments validate the effectiveness and generalizability of InterGen. Notably, it can generate more diverse and compelling two-person motions than previous methods and enables various downstream applications for human interactions.
翻译:近年来,我们在利用扩散生成逼真人体运动方面已经取得了巨大的进展。但是,它们大体上忽视了丰富的多人交互。本文提出了InterGen,这是一种有效的基于扩散的方法,将人与人之间的交互性融入运动扩散过程中,为业余用户提供了定制高质量双人互动动作的能力,只需提供文本指导即可。我们首先贡献了一个多模态数据集,名为InterHuman。它包括约107M帧的丰富双人互动,具有准确的骨骼运动和16756个自然语言描述。对于算法方面,我们仔细地将运动扩散模型针对我们的双人互动设置进行了调整。为了处理人类身份在交互过程中的对称性,我们提出了两个合作的基于Transformer的去噪器,明确地共享权重,并通过互相关注机制进一步连接这两个去噪过程。然后,我们提出了一种新的表示运动输入的方法,这种表示明确地在世界坐标系中形成了两个表演者之间的全局关系。我们进一步介绍了两个新的正则化项来对空间关系进行编码,并在训练我们的交互扩散模型期间配备相应的阻尼方案。广泛的实验验证了InterGen的有效性和通用性。值得注意的是,它可以比以前的方法生成更多样化和引人注目的双人动作,为人类交互开启了各种下游应用。