【导读】CIKM 2019 (International Conference on Information and Knowledge Management),今年会议主题是 "AI for Future Life"。CIKM是数据库、数据挖掘与内容检索领域的旗舰会议。CIKM 2019共计收到1030篇长文有效投稿,其中200篇论文被大会录用,总录用率约19.4%。图神经网络(GNN)相关的论文依然很火爆,小编在官网上查看了,CIKM专门有专题,大约10篇长文接受为GNN专题论文。为此,专知小编提前为大家筛选了六篇GNN 长文论文供参考和学习!
作者:Zekun Li,Zeyu Cui,Shu Wu,Xiaoyu Zhang,Liang Wang;
摘要:点击率(CTR)预测是在线广告和推荐系统等网络应用中的一项重要任务,其特点是多领域的。该任务的关键是对不同特征field之间的特征交互进行建模。最近提出的基于深度学习的模型遵循了一种通用的范式:首先将原始的稀疏输入multi-filed特征映射到密集的field嵌入向量中,然后简单地将其连接到深度神经网络(DNN)或其他专门设计的网络中,以学习高阶特征交互。然而,特征field的简单非结构化组合将不可避免地限制以足够灵活和显式的方式建模不同field之间复杂交互的能力。 在这项工作中,我们提出在一个图结构中直观地表示multi-field的特征,其中每个节点对应一个特征field,不同的field可以通过边进行交互。因此,建模特征交互的任务可以转换为对相应图上的节点交互进行建模。为此,我们设计了一个新的模型-Feature Interaction Graph Neural Networks (Fi-GNN)。利用图的强表征性,我们的模型不仅可以灵活、明确地对复杂的特征交互进行建模,而且可以为CTR预测提供良好的模型解释。在两个真实数据集上的实验结果显示了它的优越性。
网址: https://www.zhuanzhi.ai/paper/4d6897c6a057a33539d3e6758c223a9c
2、Graph Convolutional Networks with Motif-based Attention
作者:John Boaz Lee,Ryan A. Rossi,Xiangnan Kong,Sungchul Kim,Eunyee Koh,Anup Rao;
摘要:深度卷积神经网络在计算机视觉和语音识别领域的成功,使得研究人员开始研究该体系结构对图结构数据的泛化。最近提出的一种称为图卷积网络的方法能够在节点分类方面取得最新的成果。然而,由于所提出的方法依赖于spectral图卷积的局部一阶近似,因此无法捕获图中节点间的高阶相互作用。在这项工作中,我们提出了一个motif-based的图注意力模型,称为Motif Convolutional Networks,它通过使用加权多跳motif邻接矩阵来捕获高阶邻域,从而泛华了过去的方法。一个新的注意力机制被用来允许每个单独的节点选择最相关的邻居来应用它的过滤器。我们在不同领域(社会网络和生物信息学)的图上评估了我们的方法,结果表明它能够在半监督节点分类任务上胜过一组有竞争力的基准方法。其他结果证明了attention的有用性,表明不同的节点对不同的高阶邻域进行了优先排序。
网址: https://www.zhuanzhi.ai/paper/ecff4bfc2cc3a0a44307556c0cee2443
作者:Guillaume Salha,Stratis Limnios,Romain Hennequin,Viet Anh Tran,Michalis Vazirgian;
摘要:图自编码器(AE)和变分自编码器(VAE)是近年来出现的强有力的节点嵌入方法。特别是利用图AE和VAE成功地解决了具有挑战性的链路预测问题,目的是找出图上的一些节点对是否被未观察到的边所连接。然而,这些模型侧重于无向图,因此忽略了链接的潜在方向,这限制了许多实际应用程序。在本文中,我们扩展了graph AE和VAE框架来解决有向图中的链路预测问题。我们提出了一种新的gravity-inspired的解码器方案,可以有效地从节点嵌入中重建有向图。我们对标准graph AE和VAE表现较差的三种不同定向链路预测任务进行了实证评价。我们在三个真实世界的图上获得了具有竞争力的结果,超过了几个流行的baseline。
网址: https://www.zhuanzhi.ai/paper/7ac17bf2659eff0cfb0458ded56dcbb4
4、Hashing Graph Convolution for Node Classification
作者:Wenting Zhao, Zhen Cui, Chunyan Xu, Chengzheng Li, Tong Zhang,Jian Yang;
摘要:图数据卷积在non-gridded数据中的应用引起了人们的极大兴趣。为了克服相邻节点的排序和数量的影响,在以往的研究中,往往对局部接受域进行summing/average diffusion/aggregation。然而,这种压缩成一个节点的方法容易造成节点间的signal entanglement,导致次优特征信息,降低了节点的可分辨性。针对这一问题,本文提出了一种简单而有效的哈希图卷积(HGC)方法,该方法通过在节点聚合中使用全局哈希和局部投影来进行节点分类。与传统的完全collision聚合相比,hash-projection可以大大降低相邻节点聚合时的collision概率。我们认为基于hash-projection的方法可以更好地保持甚至增加局部区域的原始差异,并得到进一步的改进。hash-projection的另一个附带效果是将每个节点的接受域归一化为一个共同大小的bucket空间,不仅避免了大小不同的邻居节点及其顺序的麻烦,而且使图卷积运行起来就像标准的shape-girded卷积一样。考虑到训练样本较小,我们在HGC中引入预测一致性正则化项来约束图中未标记节点的得分一致性。HGC在transductive和inductive实验环境下进行评估。在节点分类任务上的大量实验表明,hash-projection确实可以提高性能,我们的HGC在所有实验数据集上都取得了最新最好的结果。
网址: https://easychair.org/publications/preprint/lhT3
5、Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach
作者:Changjun Fan,Li Zeng,Yuhui Ding,Muhao Chen,Yizhou Sun,Zhong Liu;
摘要: Betweenness centrality (BC)是网络分析中广泛使用的一种中心性度量,它试图通过最短路径的比例来描述网络中节点的重要性。它是许多有价值的应用的关键,包括社区检测和网络拆除。由于时间复杂度高,在大型网络上计算BC分数在计算上具有挑战性。许多基于采样的近似算法被提出以加速BC的估计。然而,这些方法在大规模网络上仍然需要相当长的运行时间,并且它们的结果对网络的微小扰动都很敏感。 在这篇论文中,我们主要研究如何有效识别图中BC最高的top k节点,这是许多网络应用程序所必须完成的任务。与以往的启发式方法不同,我们将该问题转化为一个学习问题,并设计了一个基于encoder-decoder的框架作为解决方案。具体来说,encoder利用网络结构将每个节点表示为一个嵌入向量,该嵌入向量捕获节点的重要结构信息。decoder将每个嵌入向量转换成一个标量,该标量根据节点的BC来标识节点的相对rank。我们使用pairwise ranking损失来训练模型,以识别节点的BC顺序。通过对小规模网络的训练,该模型能够为较大网络的节点分配相对BC分数,从而识别出高排名的节点。在合成网络和真实世界网络上的实验表明,与现有的baseline相比,我们的模型在没有显著牺牲准确性的情况下大大加快了预测速度,甚至在几个大型真实世界网络的准确性方面超过了最先进的水平。
网址: https://www.zhuanzhi.ai/paper/7bde1414600ac4f4c33493994e3f80fc
6、Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation
作者:Fengli Xu,Jianxun Lian,Zhenyu Han,Yong Li,Yujian Xu,Xing Xie;
摘要:近年来,agent-initiated社交电子商务模式取得了巨大的成功,这种模式鼓励用户成为销售代理商,通过他们的社交关系来推广商品。这种类型的社交电子商务中的复杂交互可以表述为异构信息网络(HIN),其中三种节点之间的关系有多种类型,分别为用户、销售代理和商品。学习高质量的节点嵌入是研究的重点,图卷积网络(GCNs)是近年来发展起来的最先进的表示学习方法。然而,现有的GCN模型在建模异构关系和有效地从大量邻域中采样相关接收域方面都存在基本的局限性。为了解决这些问题,我们提出了RecoGCN(a RElation-aware CO-attentive GCN model)来有效地聚合HIN中的异构特征。它弥补了目前GCN在使用关系感知聚合器建模异构关系方面的局限性,并利用语义感知元路径为每个节点开辟简洁和相关的接受域。为了有效地融合从不同元路径中学习到的嵌入,我们进一步提出了一种co-attentive机制,通过关注用户、销售代理和商品之间的三种交互来动态地为不同的元路径分配重要性权重。在真实数据集上的大量实验表明,RecoGCN能够学习HIN中有意义的节点嵌入,并且在推荐任务中始终优于baseline方法。
网址: https://www.zhuanzhi.ai/vip/4e1f4ba54086e64b3cb8e47b0c7f9ca3