Recent neural network architectures have claimed to explain data from the human visual cortex. Their demonstrated performance is however still limited by the dependence on exploiting low-level features for solving visual tasks. This strategy limits their performance in case of out-of-distribution/adversarial data. Humans, meanwhile learn abstract concepts and are mostly unaffected by even extreme image distortions. Humans and networks employ strikingly different strategies to solve visual tasks. To probe this, we introduce a novel set of image transforms and evaluate humans and networks on an object recognition task. We found performance for a few common networks quickly decreases while humans are able to recognize objects with a high accuracy.
翻译:最近的神经网络结构声称解释人类视觉皮层的数据。 但是,由于依赖利用低层次的特征来完成视觉任务,它们表现的性能仍然有限。 这一战略限制了它们在分配/对抗数据外的性能。 人类同时学习抽象的概念,而且大多不受甚至极端图像扭曲的影响。 人类和网络使用截然不同的战略来解决视觉任务。 为了调查这一点,我们引入了一套新型的图像变形,并评估了物体识别任务中的人类和网络。 我们发现少数共同网络的性能迅速下降,而人类能够非常精确地识别物体。