Verifying and explaining the behavior of neural networks is becoming increasingly important, especially when they are deployed in safety-critical applications. In this paper, we study verification problems for Binarized Neural Networks (BNNs), the 1-bit quantization of general real-numbered neural networks. Our approach is to encode BNNs into Binary Decision Diagrams (BDDs), which is done by exploiting the internal structure of the BNNs. In particular, we translate the input-output relation of blocks in BNNs to cardinality constraints which are then encoded by BDDs. Based on the encoding, we develop a quantitative verification framework for BNNs where precise and comprehensive analysis of BNNs can be performed. We demonstrate the application of our framework by providing quantitative robustness analysis and interpretability for BNNs. We implement a prototype tool BDD4BNN and carry out extensive experiments which confirm the effectiveness and efficiency of our approach.
翻译:校验和解释神经网络的行为正变得越来越重要,特别是当这些网络被部署在安全关键应用中时。在本文件中,我们研究了Bincialization神经网络(BNN)的核查问题,这是一般真实神经网络的1位数的量化。我们的方法是将BNN编码为二进制决定图(BDD),这是通过利用BNN的内部结构完成的。特别是,我们把BNN的区块的输入-输出与主要限制之间的关联化,这些限制随后由BDDs编码。根据编码,我们为BNNs开发了一个定量核查框架,对BNs进行精确和全面的分析。我们通过为BNs提供定量稳健性分析和解释性框架的应用。我们采用了一个原型工具(BDD4BNN),并进行了广泛的实验,以证实我们的方法的有效性和效率。