In this paper, we propose a new adaptive technique, named adaptive trajectories sampling (ATS), which is used to select training points for the numerical solution of partial differential equations (PDEs) with deep learning methods. The key feature of the ATS is that all training points are adaptively selected from trajectories that are generated according to a PDE-related stochastic process. We incorporate the ATS into three known deep learning solvers for PDEs, namely the adaptive derivative-free-loss method (ATS-DFLM), the adaptive physics-informed neural network method (ATS-PINN), and the adaptive temporal-difference method for forward-backward stochastic differential equations (ATS-FBSTD). Our numerical experiments demonstrate that the ATS remarkably improves the computational accuracy and efficiency of the original deep learning solvers for the PDEs. In particular, for some specific high-dimensional PDEs, the ATS can even improve the accuracy of the PINN by two orders of magnitude.


翻译:本文提出一种名为自适应轨迹采样(ATS)的新的自适应技术,用于选择训练点以便使用深度学习方法数值求解偏微分方程(PDE)。ATS的关键特点在于,所有训练点都是从生成的与PDE相关的随机过程的轨迹中自适应选择的。我们将ATS纳入三种已知的PDE深度学习求解器中,分别是自适应无导数损失方法(ATS-DFLM)、自适应基于物理法的神经网络方法(ATS-PINN)以及用于正反向随机微分方程的自适应时序差分方法(ATS-FBSTD)。我们的数值实验表明,ATS显著提高了原始深度学习求解器对于PDE的计算精度和计算效率。特别地,对于某些特定的高维PDE,ATS甚至能够将PINN的精度提高两个数量级。

0
下载
关闭预览

相关内容

ATS:IEEE Asian Test Symposium。 Explanation:IEEE亚洲测试研讨会。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/ats/
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员