Siamese trackers perform similarity matching with templates (i.e., target models) to recursively localize objects within a search region. Several strategies have been proposed in the literature to update a template based on the tracker output, typically extracted from the target search region in the current frame, and thereby mitigate the effects of target drift. However, this may lead to corrupted templates, limiting the potential benefits of a template update strategy. This paper proposes a model adaptation method for Siamese trackers that uses a generative model to produce a synthetic template from the object search regions of several previous frames, rather than directly using the tracker output. Since the search region encompasses the target, attention from the search region is used for robust model adaptation. In particular, our approach relies on an auto-encoder trained through adversarial learning to detect changes in a target object's appearance and predict a future target template, using a set of target templates localized from tracker outputs at previous frames. To prevent template corruption during the update, the proposed tracker also performs change detection using the generative model to suspend updates until the tracker stabilizes, and robust matching can resume through dynamic template fusion. Extensive experiments conducted on VOT-16, VOT-17, OTB-50, and OTB-100 datasets highlight the effectiveness of our method, along with the impact of its key components. Results indicate that our proposed approach can outperform state-of-art trackers, and its overall robustness allows tracking for a longer time before failure.
翻译: Siames 跟踪器与模板( 目标模型) 相匹配, 以在搜索区域内对对象进行递归定位。 文献中提出了几项战略, 以更新基于跟踪器输出的模板, 通常从当前框架的目标搜索区域中提取, 从而减轻目标漂移的影响。 但是, 这可能导致模板被损坏, 限制了模板更新战略的潜在好处。 本文为Siamse 跟踪器提出了一个示范性适应方法, 该跟踪器使用一个变异模型, 以生成来自前几个目标搜索区域的可靠合成模板, 而不是直接使用跟踪器输出。 由于搜索区域包含该目标, 搜索区域的注意力被用于对跟踪器输出进行稳健的模型适应。 特别是, 我们的方法依靠通过对称学习培训的自动编码器来检测目标对象外观的变化并预测未来目标模板。 为了防止模板在更新过程中出现模板腐败, 拟议的跟踪器还可以使用变异模型进行变异检测, 在跟踪器稳定之前暂停更新, 并且将搜索区域的注意力用于更久的模型, 更牢固地匹配其总影响测试, 与O- TRA 和 V- hold 等 数据 恢复了我们的动态测试 。