项目名称: 强噪声高损耗环境目标探测的量子照明原理与技术

项目编号: No.61475191

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 张同意

作者单位: 中国科学院西安光学精密机械研究所

项目金额: 82万元

中文摘要: 量子照明是新近提出并得到初步实验验证的一种目标探测新技术,该技术利用频率与时间纠缠光的强量子关联特性对目标进行探测,在强热噪声光子背景和大气损耗环境下探测灵敏度和空间分辨率比传统上采用的热光和激光目标探测有大幅度提高,具有重要应用潜力。本项目旨在深入研究基于纠缠光量子照明目标探测这一新概念与新原理,探索通过在量子照明目标探测中引入纠缠交换和单光子相位敏感光参量放大两种方法,解决量子照明目标探测应用中信号光与闲置光的联合探测时间延迟与同步及最优接收机方案两个关键问题。探索最优化量子照明接收机原理与技术方案,研制纠缠光产生与表征模块和单光子相位敏感光参量放大器,构建量子照明目标探测实验装置,进行量子照明目标探测的量子增强效果对比试验,为国家的空间光学目标探测技术提供新的原理方案、知识储备和技术支撑。

中文关键词: 量子成像;量子照明;目标探测

英文摘要: Quantum illumination is a novel target detection technique proposed and demonstrated very recently. It exploits the strong quantum correlation of frequency and time entangled light.Under strong noisy background and high loss environments, the detection sensitivity and spatial revolution are drastically improved, compared to classical coherent laser target detection. Thus quantum illumination target detection has tremendous potentials in future practical applications. This project aims at to make deeply and detailed investigations on the concept and principle of quantum illumination. By employing entanlement swapping and single photon optical parametric amplication (OPA) in quantum illumination target detection, we explore the possiblities of providing solutions to the two key technology problems of time delay and synchronization of signal photon and idler photon and the scheme of optimal receiver. Research the methods of optimal receiving, develop experimental settings, and perform comparison experiments to demonstrate the quantum enhancement effect. This project would provide new principle, knowledge reserve, and technical support for space optical target detection.

英文关键词: quantum imaging;quantum illumination;target detection

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
专知会员服务
32+阅读 · 2021年10月12日
专知会员服务
53+阅读 · 2021年10月1日
专知会员服务
68+阅读 · 2021年9月10日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
43+阅读 · 2021年2月8日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
2021年全球量子信息发展报告, 32页pdf
专知
0+阅读 · 2021年5月14日
论文 | 深度学习实现目标跟踪
七月在线实验室
48+阅读 · 2017年12月8日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
8+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
14+阅读 · 2021年3月10日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
专知会员服务
32+阅读 · 2021年10月12日
专知会员服务
53+阅读 · 2021年10月1日
专知会员服务
68+阅读 · 2021年9月10日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
43+阅读 · 2021年2月8日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
2021年全球量子信息发展报告, 32页pdf
专知
0+阅读 · 2021年5月14日
论文 | 深度学习实现目标跟踪
七月在线实验室
48+阅读 · 2017年12月8日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
8+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员