Given a two-prover game $G$ and its two satisfying labelings $\psi_\mathsf{s}$ and $\psi_\mathsf{t}$, the Label Cover Reconfiguration problem asks whether $\psi_\mathsf{s}$ can be transformed into $\psi_\mathsf{t}$ by repeatedly changing the value of a vertex while preserving any intermediate labeling satisfying $G$. We consider an optimization variant of Label Cover Reconfiguration by relaxing the feasibility of labelings, referred to as Maxmin Label Cover Reconfiguration: we are allowed to transform by passing through any non-satisfying labelings, but required to maximize the minimum fraction of satisfied edges during transformation from $\psi_\mathsf{s}$ to $\psi_\mathsf{t}$. Since the parallel repetition theorem of Raz (SIAM J. Comput., 1998), which implies NP-hardness of Label Cover within any constant factor, produces strong inapproximability results for many NP-hard problems, one may think of using Maxmin Label Cover Reconfiguration to derive inapproximability results for reconfiguration problems. We prove the following results on Maxmin Label Cover Reconfiguration, which display different trends from those of Label Cover and the parallel repetition theorem: (1) Maxmin Label Cover Reconfiguration can be approximated within a factor of nearly $\frac{1}{4}$ for restricted graph classes, including slightly dense graphs and balanced bipartite graphs. (2) A naive parallel repetition of Maxmin Label Cover Reconfiguration does not decrease the optimal objective value. (3) Label Cover Reconfiguration on projection games can be decided in polynomial time. The above results suggest that a reconfiguration analogue of the parallel repetition theorem is unlikely.


翻译:给定一个二人博弈 $G$ 和它的两个可满足标签 $\psi_\mathsf{s}$ 和 $\psi_\mathsf{t}$,标签覆盖重新配置问题询问是否可以通过重复改变一个节点的值,而保持任何中间满足 $G$ 的标记,将 $\psi_\mathsf{s}$ 转换为 $\psi_\mathsf{t}$。本文考虑了标签覆盖重新配置的优化变体,通过放松标记的可满足性,称为最大最小标签覆盖重新配置,我们允许通过任何不满足标记来进行转换,但在从 $\psi_\mathsf{s}$ 到 $\psi_\mathsf{t}$ 的转换过程中需要最大化满足的边的最小分数。由 Raz 的平行重复定理(SIAM J. Comput., 1998)推导,标签覆盖问题的所有常数因子内均为 NP-完全问题,从而可以考虑使用最大最小标签覆盖重新配置来导出无法近似的结果。本文证明了关于最大最小标签覆盖重新配置的以下结果,展示了与标签覆盖和平行重复定理不同的趋势:(1)带限制的图类中,包括稍微密集的图和平衡的二部图,最大最小标签覆盖重新配置可以近似于 $\frac{1}{4}$。 (2)最大最小标签覆盖重新配置的 Naive 平行重复不会降低最优目标值。 (3)关于投影博弈的标签覆盖重新配置可以在多项式时间内被决定。以上结果表明重新配置平行重复定理不太可能存在。

0
下载
关闭预览

相关内容

JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员