This paper proposes a novel model-based policy gradient algorithm for tracking dynamic targets using a mobile robot, equipped with an onboard sensor with limited field of view. The task is to obtain a continuous control policy for the mobile robot to collect sensor measurements that reduce uncertainty in the target states, measured by the target distribution entropy. We design a neural network control policy with the robot $SE(3)$ pose and the mean vector and information matrix of the joint target distribution as inputs and attention layers to handle variable numbers of targets. We also derive the gradient of the target entropy with respect to the network parameters explicitly, allowing efficient model-based policy gradient optimization.
翻译:本文提出一种新的基于模型的政策梯度算法,用于使用移动机器人跟踪动态目标,该算法配备了带有限视野的机载传感器,任务是为移动机器人获得持续控制政策,以收集减少目标状态不确定性的传感器测量数据,以目标分布酶测量;我们设计神经网络控制政策,使用机器人$SE(3)美元构成,以及作为输入和关注层次的通用目标分布平均矢量和信息矩阵,以处理目标的可变数字;我们还明确得出目标信箱在网络参数方面的梯度,允许基于模型的高效政策梯度优化。