Multiple Object Tracking (MOT) focuses on modeling the relationship of detected objects among consecutive frames and merge them into different trajectories. MOT remains a challenging task as noisy and confusing detection results often hinder the final performance. Furthermore, most existing research are focusing on improving detection algorithms and association strategies. As such, we propose a novel framework that can effectively predict and mask-out the noisy and confusing detection results before associating the objects into trajectories. In particular, we formulate such "bad" detection results as a sequence of events and adopt the spatio-temporal point process}to model such events. Traditionally, the occurrence rate in a point process is characterized by an explicitly defined intensity function, which depends on the prior knowledge of some specific tasks. Thus, designing a proper model is expensive and time-consuming, with also limited ability to generalize well. To tackle this problem, we adopt the convolutional recurrent neural network (conv-RNN) to instantiate the point process, where its intensity function is automatically modeled by the training data. Furthermore, we show that our method captures both temporal and spatial evolution, which is essential in modeling events for MOT. Experimental results demonstrate notable improvements in addressing noisy and confusing detection results in MOT datasets. An improved state-of-the-art performance is achieved by incorporating our baseline MOT algorithm with the spatio-temporal point process model.
翻译:多个物体跟踪(MOT) 侧重于对连续框架间被探测到的物体的关系进行建模,并将其合并成不同的轨迹。MOT仍然是一项具有挑战性的任务,因为一个点的发生率通常以明确界定的强度函数为特征,这取决于某些具体任务先前的知识。因此,大多数现有研究都侧重于改进探测算法和关联战略。因此,我们提出一个新的框架,在将物体与轨迹联系起来之前,可以有效地预测和掩盖噪音和混乱的探测结果。我们特别将这种“坏”的探测结果作为事件序列,并采用瞬时点进程作为事件序列,采用这种时空点-时点进程作为模型。此外,我们显示,一个点过程的发生率以明确定义的强度函数为特征,这取决于某些具体任务的先前知识。因此,设计一个适当的模型既昂贵又耗时,而且一般化的能力也有限。为了解决这一问题,我们采用了演进周期神经网络(Conv-RNNN) 来即点进程,即其强度功能由培训数据自动模拟。我们显示,我们的方法既能捕捉到时间点点和空间进点的强度,这取决于某些特定的强度功能的强度功能的强度功能的强度功能的强度功能的强度功能,这取决于先于先于某些特定的具体的强度函数,而实验性测算,这是在实验性测算模型性测算结果的模型性测算的模型的模型,这是在模型的模型的模型,这是在模型式式的模型式的改进的结果,这是在模型,通过测算结果的改进的结果。