In this paper, we present a flexible and probabilistic framework for tracking topological features in time-varying scalar fields using merge trees and partial optimal transport. Merge trees are topological descriptors that record the evolution of connected components in the sublevel sets of scalar fields. We present a new technique for modeling and comparing merge trees using tools from partial optimal transport. In particular, we model a merge tree as a measure network, that is, a network equipped with a probability distribution, and define a notion of distance on the space of merge trees inspired by partial optimal transport. Such a distance offers a new and flexible perspective for encoding intrinsic and extrinsic information in the comparative measures of merge trees. More importantly, it gives rise to a partial matching between topological features in time-varying data, thus enabling flexible topology tracking for scientific simulations. Furthermore, such partial matching may be interpreted as probabilistic coupling between features at adjacent time steps, which gives rise to probabilistic tracking graphs. We derive a stability result for our distance and provide numerous experiments indicating the efficacy of distance in extracting meaningful feature tracks.
翻译:在本文中,我们提出了一个灵活和概率框架,用于利用合并树木和部分最佳运输方式来跟踪时间变化的弧形田中的表层特征。合并树木是表层描述器,记录标度田子下层各层相连接组成部分的演变情况。我们展示了利用部分优化运输工具来建模和比较合并树木的新方法。特别是,我们用一个测量网络来模拟合并树,即一个配备概率分布的网络,并界定由部分最佳运输方式激发的合并树空间的距离概念。这种距离为合并树的比较度量中的内在和外部信息提供了一种新的灵活视角。更重要的是,它导致时间变化数据中表层特征之间的部分匹配,从而使得能够对科学模拟进行灵活的表层跟踪。此外,这种部分匹配可以被解释为相邻时间步骤各特征之间的概率组合,从而产生概率性跟踪图。我们为我们的距离得出了稳定结果,并提供了大量实验,表明在提取有意义的地貌轨道时距离方面的效果。