In this paper, we develop a low-rank method with high-order temporal accuracy using spectral deferred correction (SDC) to compute linear matrix differential equations. In [1], a low rank numerical method is proposed to correct the modeling error of the basis update and the Galerkin (BUG) method, which is a computational approach for DLRA. This method (merge-BUG/mBUG method) has been demonstrated to be first order convergent for general advection-diffusion problems. In this paper, we explore using SDC to elevate the convergence order of the mBUG method. In SDC, we start by computing a first-order solution by mBUG, and then perform successive updates by computing low-rank solutions to the Picard integral equation. Rather than a straightforward application of SDC with mBUG, we propose two aspects to improve computational efficiency. The first is to reduce the intermediate numerical rank by detailed analysis of dependence of truncation parameter on the correction levels. The second aspect is a careful choice of subspaces in the successive correction to avoid inverting large linear systems (from the K- and L-steps in BUG). We prove that the resulting scheme is high-order accurate for the Lipschitz continuous and bounded dynamical system. We consider numerical rank control in our framework by comparing two low-rank truncation strategies: the hard truncation strategy by truncated singular value decomposition and the soft truncation strategy by soft thresholding. We demonstrate numerically that soft thresholding offers better rank control in particular for higher-order schemes for weakly (or non-)dissipative problems.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员