In this paper, we provide bounds in Wasserstein and total variation distances between the distributions of the successive iterates of two functional autoregressive processes with isotropic Gaussian noise of the form $Y_{k+1} = \mathrm{T}_\gamma(Y_k) + \sqrt{\gamma\sigma^2} Z_{k+1}$ and $\tilde{Y}_{k+1} = \tilde{\mathrm{T}}_\gamma(\tilde{Y}_k) + \sqrt{\gamma\sigma^2} \tilde{Z}_{k+1}$. More precisely, we give non-asymptotic bounds on $\rho(\mathcal{L}(Y_{k}),\mathcal{L}(\tilde{Y}_k))$, where $\rho$ is an appropriate weighted Wasserstein distance or a $V$-distance, uniformly in the parameter $\gamma$, and on $\rho(\pi_{\gamma},\tilde{\pi}_{\gamma})$, where $\pi_{\gamma}$ and $\tilde{\pi}_{\gamma}$ are the respective stationary measures of the two processes. The class of considered processes encompasses the Euler-Maruyama discretization of Langevin diffusions and its variants. The bounds we derive are of order $\gamma$ as $\gamma \to 0$. To obtain our results, we rely on the construction of a discrete sticky Markov chain $(W_k^{(\gamma)})_{k \in \mathbb{N}}$ which bounds the distance between an appropriate coupling of the two processes. We then establish stability and quantitative convergence results for this process uniformly on $\gamma$. In addition, we show that it converges in distribution to the continuous sticky process studied in previous work. Finally, we apply our result to Bayesian inference of ODE parameters and numerically illustrate them on two particular problems.
翻译:在本文中, 我们以 瓦西斯坦 提供两个功能自动递增进程的连续循环分配的分解值, 以及两个函数递增进程的连续循环分配之间的总距离。 以 $Y\ k+1} =\ mathrm{ T ⁇ gamma( Y_ k) +\ qrt\ gama\ gma2} +\ sqrt{ k+1} 和 $\ tilde{ Y\ k+1} =\ tilde\\ mathrm{ T ⁇ gamma} = 参数 +\ sqrt\ glamta\ gmama\ g2}\ titled de gde\ k+1} 。 更精确地说, 我们给 $( commamay) 的分子递增进程, 和 美元递增进程 的 。 以 美元 =\\\\\ maqr\ max 进程中的 。 max max 进程中的 max max max 进程和 rodeal romodeal romodeal 。