Betweenness centrality is a popular centrality measure with applications in several domains, and whose exact computation is impractical for modern-sized networks. We present SILVAN, a novel, efficient algorithm to compute, with high probability, accurate estimates of the betweenness centrality of all nodes of a graph and a high-quality approximation of the k most central nodes of a graph. SILVAN follows a progressive sampling approach, and builds on recently improved bounds on Monte-Carlo Empirical Rademacher Averages, a fundamental tool from statistical learning theory. SILVAN relies on a novel estimation scheme that leads to non-uniform bounds on the deviation of the estimates from the true values of the between centrality of all the nodes, providing tight guarantees on the quality of the approximation. Our extensive experimental evaluation shows that SILVAN extracts high-quality approximations while outperforming, in terms of number of samples and accuracy, the state-of-the-art approximation algorithm with comparable quality guarantees.
翻译:中间点是几个领域应用的流行中心点衡量标准,其精确计算对现代规模的网络来说不切实际。 我们提供了SILVAN,这是一个新颖、高效的算法,可以高概率地计算图中所有节点的中心点之间的准确估计和图中最中心节点 k 的高质量近似值。 SILVAN采用渐进抽样方法,并以最近改进的蒙特-卡洛 Empiriccacal Rademacher Abus的界限为基础,这是统计学理论中的一项基本工具。 SILVAN依靠一种新的估算方法,它导致所有节点之间真正值的估计数偏离非统一界限,为近点的质量提供严密的保证。 我们的广泛实验评估表明,SILVAN在样品数量和准确性方面,在质量保障相似的状态近似算法方面,其质量优于业绩。