Methods of estimation and forecasting for stationary models are well known in classical time series analysis. However, stationarity is an idealization which, in practice, can at best hold as an approximation, but for many time series may be an unrealistic assumption. We define a class of locally stationary processes which can lead to more accurate uncertainty quantification over making an invalid assumption of stationarity. This class of processes assumes the model parameters to be time-varying and parameterizes them in terms of a transformation of basis functions that ensures that the processes are locally stationary. We develop methods and theory for parameter estimation in this class of models, and propose a test that allow us to examine certain departures from stationarity. We assess our methods using simulation studies and apply these techniques to the analysis of an electroencephalogram time series.
翻译:固定模型的估计和预测方法在古典时间序列分析中广为人知,然而,固定性是一种理想化,实际上,它最多可以作为近似值,但在许多时间序列中可能是一个不现实的假设。我们定义了一组当地固定过程,这些过程可导致对无效的固定性假设进行更准确的不确定性量化。这种过程类别假设模型参数是时间变化的参数,并在基础功能转换时将其参数化,以确保过程是当地固定的。我们为这一类模型的参数估算制定方法和理论,并提出一种测试,使我们能够检查某些偏离固定性的情况。我们利用模拟研究评估我们的方法,并将这些技术应用于电脑图时间序列的分析。