This work studies the (non)robustness of two-layer neural networks in various high-dimensional linearized regimes. We establish fundamental trade-offs between memorization and robustness, as measured by the Sobolev-seminorm of the model w.r.t the data distribution, i.e the square root of the average squared $L_2$-norm of the gradients of the model w.r.t the its input. More precisely, if $n$ is the number of training examples, $d$ is the input dimension, and $k$ is the number of hidden neurons in a two-layer neural network, we prove for a large class of activation functions that, if the model memorizes even a fraction of the training, then its Sobolev-seminorm is lower-bounded by (i) $\sqrt{n}$ in case of infinite-width random features (RF) or neural tangent kernel (NTK) with $d \gtrsim n$; (ii) $\sqrt{n}$ in case of finite-width RF with proportionate scaling of $d$ and $k$; and (iii) $\sqrt{n/k}$ in case of finite-width NTK with proportionate scaling of $d$ and $k$. Moreover, all of these lower-bounds are tight: they are attained by the min-norm / least-squares interpolator (when $n$, $d$, and $k$ are in the appropriate interpolating regime). All our results hold as soon as data is log-concave isotropic, and there is label-noise, i.e the target variable is not a deterministic function of the data / features. We empirically validate our theoretical results with experiments. Accidentally, these experiments also reveal for the first time, (iv) a multiple-descent phenomenon in the robustness of the min-norm interpolator.


翻译:这项工作在高维线性系统中研究两层神经网络的( 不) 紫色 。 我们根据模型的Sobolev- seminnoorm w.r. t 数据分布, 即模型平均正方方块的平方根 $_ 2美元 r. t 输入。 更精确地说, 如果培训实例数为一美元, 输入量为美元, 输入量为美元, 而美元是两层神经网络中隐藏的神经数量。 我们证明, 大量的激活功能, 如果模型的reblev- seminnormmmmum w. twork- sermorm $2 rm, 也就是模型的正方块平方根 $@rr. 。 如果模型的正方块值平均正方块值为美元 rr.r. 美元, 那么, 以正方块平方块平方块的电量值( 美元) 和正方块值值值为美元, 以美元平方块平方平方块的正方位数据 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员