Facial Expression Recognition (FER) is an important task in computer vision and has wide applications in human-computer interaction, intelligent security, emotion analysis, and other fields. However, the limited size of FER datasets limits the generalization ability of expression recognition models, resulting in ineffective model performance. To address this problem, we propose a semi-supervised learning framework that utilizes unlabeled face data to train expression recognition models effectively. Our method uses a dynamic threshold module (\textbf{DTM}) that can adaptively adjust the confidence threshold to fully utilize the face recognition (FR) data to generate pseudo-labels, thus improving the model's ability to model facial expressions. In the ABAW5 EXPR task, our method achieved excellent results on the official validation set.
翻译:显性表现识别(FER)是计算机愿景中的一项重要任务,在人-计算机互动、智能安全、情感分析和其他领域具有广泛的应用。然而,FER数据集的有限规模限制了表达识别模型的概括化能力,导致模型性能低下。为解决这一问题,我们提出了一个半监督的学习框架,利用未贴标签的面部数据有效培训表达识别模型。我们的方法使用一个动态阈值模块(\ textbf{DTM}),能够适应性地调整信任阈值,充分利用面部识别(FR)数据生成假标签,从而提高模型模拟面部表达的能力。在ABAWA5 EXPR任务中,我们的方法在正式验证集中取得了出色成果。</s>