Learning representation from unlabeled time series data is a challenging problem. Most existing self-supervised and unsupervised approaches in the time-series domain do not capture low and high-frequency features at the same time. Further, some of these methods employ large scale models like transformers or rely on computationally expensive techniques such as contrastive learning. To tackle these problems, we propose a non-contrastive self-supervised learning approach efficiently captures low and high-frequency time-varying features in a cost-effective manner. Our method takes raw time series data as input and creates two different augmented views for two branches of the model, by randomly sampling the augmentations from same family. Following the terminology of BYOL, the two branches are called online and target network which allows bootstrapping of the latent representation. In contrast to BYOL, where a backbone encoder is followed by multilayer perceptron (MLP) heads, the proposed model contains additional temporal convolutional network (TCN) heads. As the augmented views are passed through large kernel convolution blocks of the encoder, the subsequent combination of MLP and TCN enables an effective representation of low as well as high-frequency time-varying features due to the varying receptive fields. The two modules (MLP and TCN) act in a complementary manner. We train an online network where each module learns to predict the outcome of the respective module of target network branch. To demonstrate the robustness of our model we performed extensive experiments and ablation studies on five real-world time-series datasets. Our method achieved state-of-art performance on all five real-world datasets.


翻译:从未贴标签的时间序列数据中学习是一个具有挑战性的问题。 在时间序列域中,大多数现有的自监管和未经监管的方法并不同时包含低频和高频特性。 此外,有些方法使用变压器等大型模型,或者依赖成本昂贵的计算技术,例如对比学习。为了解决这些问题,我们建议采用非互动的自监管学习方法,以具有成本效益的方式有效捕捉低频和高频时间变化的特性。我们的方法将原始时间序列数据作为输入,并且通过随机抽样从同一组中抽取两个模型分支的扩大视图。按照BYOL的术语,这两个分支被称为在线和目标网络,可以对潜在代表进行示意。与BYOL不同的是,一个骨干编码器被多层透镜(MLP)头跟踪,拟议模型包含额外的时间变动模型网络(TCN)头。随着对模型的输入,通过该模型的州内剖面构造块进行两种不同的剖面图,随后将MLP和TCN的网络的连续组合,可以有效地展示我们各自的五级模型。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月8日
Arxiv
1+阅读 · 2022年6月7日
Arxiv
12+阅读 · 2020年8月3日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员