We present a novelty detection framework for Convolutional Neural Network (CNN) sensors that we call Sensor-Activated Feature Extraction One-Class Classification (SAFE-OCC). We show that this framework enables the safe use of computer vision sensors in process control architectures. Emergent control applications use CNN models to map visual data to a state signal that can be interpreted by the controller. Incorporating such sensors introduces a significant system operation vulnerability because CNN sensors can exhibit high prediction errors when exposed to novel (abnormal) visual data. Unfortunately, identifying such novelties in real-time is nontrivial. To address this issue, the SAFE-OCC framework leverages the convolutional blocks of the CNN to create an effective feature space to conduct novelty detection using a desired one-class classification technique. This approach engenders a feature space that directly corresponds to that used by the CNN sensor and avoids the need to derive an independent latent space. We demonstrate the effectiveness of SAFE-OCC via simulated control environments.
翻译:我们为进化神经网络(CNN)传感器提供了一个新颖的探测框架,我们称之为传感器激活地貌提取单系列分类(SAFE-OCC)。我们显示,这个框架使计算机视觉传感器在流程控制结构中能够安全使用。新兴控制应用程序使用CNN模型将视觉数据映射成控制器可以解释的状态信号。这种传感器引入了一个重大的系统操作脆弱性,因为有线电视新闻网传感器在接触新颖(异常)视觉数据时可能出现高预测误差。不幸的是,在实时识别这种新奇特是非边际的。为了解决这一问题,SAFE-OC框架利用CNN的相联区块来创造有效的特征空间,以便利用理想的单级分类技术进行新颖的探测。这一方法产生了一个与CNN传感器所使用的特征空间直接对应的特征空间,并避免了获取独立潜伏空间的需要。我们通过模拟控制环境展示了SAFE-OC的有效性。