In this paper we propose a Bayesian nonparametric approach to modelling sparse time-varying networks. A positive parameter is associated to each node of a network, which models the sociability of that node. Sociabilities are assumed to evolve over time, and are modelled via a dynamic point process model. The model is able to capture long term evolution of the sociabilities. Moreover, it yields sparse graphs, where the number of edges grows subquadratically with the number of nodes. The evolution of the sociabilities is described by a tractable time-varying generalised gamma process. We provide some theoretical insights into the model and apply it to three datasets: a simulated network, a network of hyperlinks between communities on Reddit, and a network of co-occurences of words in Reuters news articles after the September 11th attacks.
翻译:在本文中,我们建议采用巴伊西亚非对称方法来模拟稀少的时间分布网络。一个正参数与一个网络的每个节点相关,该节点模拟该节点的可互换性。 社会性假设是随着时间的推移而演变的,并且通过动态点进程模型进行模拟。 该模型能够捕捉同源点的长期演变。 此外,它生成了稀少的图表,其中边缘数随着节点数的次相向增长。 社会性的变化通过一个可移动时间分布的通用伽马进程来描述。 我们对模型提供一些理论见解,并将其应用于三个数据集:模拟网络、雷迪特社区之间的超链接网络以及9月11日袭击后路透社新闻文章中共同使用的词汇网络。