Generative Adversarial Networks (GANs) convergence in a high-resolution setting with a computational constrain of GPU memory capacity (from 12GB to 24 GB) has been beset with difficulty due to the known lack of convergence rate stability. In order to boost network convergence of DCGAN (Deep Convolutional Generative Adversarial Networks) and achieve good-looking high-resolution results we propose a new layered network structure, HDCGAN, that incorporates current state-of-the-art techniques for this effect. A novel dataset, Curt\'o Zarza (CZ), containing human faces from different ethnical groups in a wide variety of illumination conditions and image resolutions is introduced. We conduct extensive experiments on CelebA and CZ.
翻译:由于已知的趋同率缺乏稳定性,在高分辨率环境下,GPU记忆能力(从12GB到24GB)的计算制约下,GANS(GANs)在高分辨率环境下的生成Aversarial Network(GANs)趋同,由于已知的趋同率缺乏稳定性,因此遇到了困难。为了推动DCGAN(深电联动产生反转网络)的网络趋同,并取得高分辨率的优视结果,我们建议建立一个新的多层网络结构,HDCGAN(HDCGAN),将目前最先进的技术纳入到这一效果中。一个新的数据集,Curt\'o Zarza(CZZZ),包含不同种族群体在各种发光条件下的人类面孔和图像分辨率。我们对CelebA和CZ进行了广泛的实验。