Inspired from quantum Monte Carlo, by using unbiased estimators all the time and sampling discrete and continuous variables at the same time using Metropolis algorithm, we present a novel, fast, and accurate high performance Monte Carlo Parametric Expectation Maximization (MCPEM) algorithm. We named it Randomized Parametric Expectation Maximization (RPEM). In particular, we compared RPEM with Monolix's SAEM and Certara's QRPEM for a realistic two-compartment Voriconazole model with ordinary differential equations (ODEs) and using simulated data. We show that RPEM is 3 to 4 times faster than SAEM and QRPEM, and more accurate than them in reconstructing the population parameters.
翻译:由量子蒙特卡洛所启发,我们通过使用大都会算法,同时使用不偏倚的测算器,对离散变量和连续变量进行抽样,同时使用大都会算法,我们展示了一种创新的、快速的和准确的高性能的蒙特卡洛差分期望最大化算法,我们称之为随机化差分期望最大化算法。我们把RPEM与Monollix的SAEM和Certara的 QRPEM作了比较,用一种现实的、两个组合的Voriconazole模型和普通的差分方程(ODEs),并使用模拟数据。我们显示,RPEM比SAEM和QRPEM快3至4倍,在重建人口参数方面比他们更准确。