项目名称: 高容量型纳米ZnMeFe2O4/C核壳结构材料的设计与嵌脱锂机理研究

项目编号: No.51201066

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 金属材料学科

项目作者: 侯贤华

作者单位: 华南师范大学

项目金额: 25万元

中文摘要: 本项目拟采用分子设计和实验制备相结合的方法,研究高容量型核壳结构负极材料ZnMeFe2O4/C的嵌脱锂机理与电化学性能。理论部分应用分子设计与模拟筛选出适合于嵌脱锂的ZnxMe1-xFe2O4嵌锂相化合物(其中Me 为活性元素Sn, Sb, Si, Al等);研究该化合物的掺杂组元组份、嵌锂形成能、晶体形态、电子结构、电位轮廓线等性质,探索影响首次不可逆容量的原因及减缓充放电过程中结构畸变的作用机理;研究Li+在各相界面层中的输运过程。实验部分首先利用前驱固相反应、微乳液和聚合物热分解等新的化学方法制备出ZnxMe1-xFe2O4纳米材料;然后对小颗粒石墨母体和制备的纳米颗粒进行表面处理,并以该石墨为载体,将纳米颗粒弥散钉扎于石墨表面;最后采用有机高分子碳源包覆制备得到具有较高稳定性的"核-壳"结构材料。本项目研究为新型高容量ZnFe2O4材料的应用奠定基础。

中文关键词: 锂离子电池;ZnxMe1-xFe2O4@C;负极材料;可控制备;电化学性能

英文摘要: TThe project tries to employ the method integrating molecular design with experiment preparation to investigate the insertion-lithium mechanism and electrochemical properties of ZnMeFe2O4/C, the anode materials with high capcacity and core-shell structure. In the theoretical part, ZnxMe1-xFe2O4,insertion-lithium compound, including active element Me (Sn, Sb, Si, Al etc), will be filtered through molecular desiging and simulating.The research tries to exambine some properties of this compound, including doped element and component, formantion energy, crystal shape, electronic structure and elctronic potential curve to explore the reasons resulting in the initial irreversible capacity and illustrate the mechanism of alleviating the aberratiions of structure in the discharging progress. Tries to study the transport system of Li+ in all interface layer. In experimental part, the new synthetic method will be used to produce the ZnxMe1-xFe2O4 nanomaterial, then the surface of graphite and nanoparticals will be decorated and spreaded on the surface of the little graphite particales, finally we employ the mehod of high polymer material disintigrating to produce the core-shell structural material with highly stable structurees. The present program will lay the groundwork for future applitcation of the new high capacity m

英文关键词: lithium ion battery;ZnxMe1-xFe2O4@C;anode materials;controllable preparation;electrochemical performance

成为VIP会员查看完整内容
0

相关内容

专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
13+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年9月3日
专知会员服务
29+阅读 · 2020年8月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关主题
相关VIP内容
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
13+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年9月3日
专知会员服务
29+阅读 · 2020年8月8日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员