A combination of deep reinforcement learning and supervised learning is proposed for the problem of active sequential hypothesis testing in completely unknown environments. We make no assumptions about the prior probability, the action and observation sets, and the observation generating process. Our method can be used in any environment even if it has continuous observations or actions, and performs competitively and sometimes better than the Chernoff test, in both finite and infinite horizon problems, despite not having access to the environment dynamics.


翻译:提出了一种深度强化学习和监督学习的组合方法,用于在完全未知环境中进行主动序列假设检验。我们不对先验概率、行动和观测集以及观测生成过程做任何假设。我们的方法可以在任何环境中使用,即使具有连续的观测或行动,并且在有限和无限的时域问题中表现出与Chernoff测试竞争力甚至更好的性能,尽管我们无法访问环境动态。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
11+阅读 · 2021年12月8日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员