Isotonic distributional regression (IDR) is a powerful nonparametric technique for the estimation of conditional distributions under order restrictions. In a nutshell, IDR learns conditional distributions that are calibrated, and simultaneously optimal relative to comprehensive classes of relevant loss functions, subject to isotonicity constraints in terms of a partial order on the covariate space. Nonparametric isotonic quantile regression and nonparametric isotonic binary regression emerge as special cases. For prediction, we propose an interpolation method that generalizes extant specifications under the pool adjacent violators algorithm. We recommend the use of IDR as a generic benchmark technique in probabilistic forecast problems, as it does not involve any parameter tuning nor implementation choices, except for the selection of a partial order on the covariate space. The method can be combined with subsample aggregation, with the benefits of smoother regression functions and gains in computational efficiency. In a simulation study, we compare methods for distributional regression in terms of the continuous ranked probability score (CRPS) and $L_2$ estimation error, which are closely linked. In a case study on raw and postprocessed quantitative precipitation forecasts from a leading numerical weather prediction system, IDR is competitive with state of the art techniques.
翻译:同位素分布回归(IDR)是一种强大的非参数性技术,用于估计按订单限制进行的有条件分布; 简而言之,IDR学习了经校准的有条件分布,并与相关损失功能的综合类别同时取得最优的分级,但以合差空间部分顺序的异位性限制为条件; 非参数性等分量回归和非参数性二次回归作为特例出现; 关于预测,我们建议采用一种内推法,在紧邻的群落违反者算法下将剩余规格概括化。 我们建议使用IDR作为概率预测问题的一种通用基准技术,因为它不涉及任何参数调整或执行选择,除非在共差空间选择部分顺序。该方法可以与子相混合,同时产生更平稳回归功能和计算效率增益的好处。 在一项模拟研究中,我们将分布回归方法在连续排序概率评分(CRPS)和$L_2美元估算误差方面进行比较,因为前者不涉及任何参数调整或执行选择,除非在共差空间选择部分顺序上选择。 该方法可以与子组合组合组合组合组合组合组合组合,在计算效率方面,我们比较了连续排列概率分数分数的概率分数分数法(CRPS)和美元估算误差方法。