In directional statistics, the von Mises distribution is a key element in the analysis of circular data. While there is a general agreement regarding the estimation of its location parameter $\mu$, several methods have been proposed to estimate the concentration parameter $\kappa$. We here provide a thorough evaluation of the behavior of 12 such estimators for datasets of size $N$ ranging from 2 to 8\,192 generated with a $\kappa$ ranging from 0 to 100. We provide detailed results as well as a global analysis of the results, showing that (1) for a given $\kappa$, most estimators have behaviors that are very similar for large datasets ($N \geq 16$) and more variable for small datasets, and (2) for a given estimator, results are very similar if we consider the mean absolute error for $\kappa \leq 1$ and the mean relative absolute error for $\kappa \geq 1$.
翻译:在方向统计中, von Mises 分布是分析循环数据的一个关键要素。 虽然对于估计其位置参数的数值已达成普遍共识 $\ mu$, 但提出了几种方法来估计浓度参数 $\ kapa $。 我们在这里对12个这样的测算器的行为进行了彻底的评估, 这些测算器用于规模在2美元到8美元之间的数据集,192美元以0美元到100美元不等的美元生成, 我们提供了详细的结果以及对结果的全球分析, 表明(1) 对于给定的 $\ kapa $, 大多数测算器的行为与大数据集非常相似(N\ geq 16美元),小数据集的变数更多。 (2) 对于给定的测算器,如果考虑 $\ kapa\ leq 1美元和 $\ kapa\ ge 1美元的平均绝对误差,结果非常相似。