In this paper we describe a probabilistic method for estimating the position of an object along with its covariance matrix using neural networks. Our method is designed to be robust to outliers, have bounded gradients with respect to the network outputs, among other desirable properties. To achieve this we introduce a novel probability distribution inspired by the Huber loss. We also introduce a new way to parameterize positive definite matrices to ensure invariance to the choice of orientation for the coordinate system we regress over. We evaluate our method on popular body pose and facial landmark datasets and get performance on par or exceeding the performance of non-heatmap methods. Our code is available at github.com/Davmo049/Public_prob_regression_with_huber_distributions
翻译:在本文中,我们用神经网络来描述估计物体位置及其共变量矩阵的概率方法。 我们的方法旨在对外部线进行强力评估,除其它可取的属性外,还结合网络输出的梯度。 为了实现这一点,我们引入了由Huber损失引发的新的概率分布。 我们还引入了一种新的方法,将正确定矩阵参数化,以确保我们倒退的坐标系统选择方向时的偏向性。 我们评估了我们关于受欢迎的身体面部和面部标志数据集的方法,并取得了与非热映方法等值或超值的性能。 我们的代码可以在 Github.com/Davmo049/ Public_ prob_regrestion_ with_huber_dictions