Large margin nearest neighbor (LMNN) is a metric learner which optimizes the performance of the popular $k$NN classifier. However, its resulting metric relies on pre-selected target neighbors. In this paper, we address the feasibility of LMNN's optimization constraints regarding these target points, and introduce a mathematical measure to evaluate the size of the feasible region of the optimization problem. We enhance the optimization framework of LMNN by a weighting scheme which prefers data triplets which yield a larger feasible region. This increases the chances to obtain a good metric as the solution of LMNN's problem. We evaluate the performance of the resulting feasibility-based LMNN algorithm using synthetic and real datasets. The empirical results show an improved accuracy for different types of datasets in comparison to regular LMNN.
翻译:最近的大边缘邻居(LMNN)是一个通用的学习器,它优化了流行的 $k$NN 分类器的性能。 但是,它所产生的衡量标准依赖于预选的目标邻居。 在本文中,我们讨论了LMNN在这些目标点上的优化限制的可行性,并引入了数学计量来评估优化问题的可行区域的规模。我们通过一个加权计划来增强LMN的优化框架,这种加权计划更倾向于数据三重,从而产生更大的可行区域。这增加了获得良好计量的机会,作为LMNN问题的解决方案。我们用合成和真实数据集评估了由此产生的基于可行性的 LMNN 算法的性能。经验结果显示,与常规 LMNN 相比,不同类型数据集的准确性有所提高。